NuRadioOpt

Doubling the Detection Rate of Ultra-High Energy Neutrinos through a Neural Network Trigger

Christian Glaser, Alan Coleman, Thorsten Glüsenkamp Uppsala Univsersity

European Research Council Established by the European Commission

Executive Summary

NuRadioOpt will improve both key factors that impact the science output

detection rate of UHE neutrinos

→ objective 1: Deep-Learning-Based Trigger

precision to determine the neutrino's direction and energy

> → objective 2: End-to-End Optimization + Deep Learning Reconstruction

How:

Using Deep Learning and Differential Programming

Executive Summary

NuRadioOpt will improve both key factors that impact the science output

EuCAIF working group 2, Tuesday afternoon

Executive Summary

NuRadioOpt will improve both key factors that impact the science output

The need to detect UHE ($E_v > 10^{17} eV$) neutrinos

- Breakthrough in astroparticle physics
- New Window to the Universe
- Excellent probes of astroparticle and high-energy physics

The need to detect UHE ($E_v > 10^{17} eV$) neutrinos

- Breakthrough in astroparticle physics
- New Window to the Universe
- Excellent probes of astroparticle and high-energy physics
- **TeV PeV energies**
 - IceCube: Currently world's largest neutrino telescope
 - Breakthrough discoveries

The need to detect UHE ($E_v > 10^{17} eV$) neutrinos

- Breakthrough in astroparticle physics
- New Window to the Universe
- Excellent probes of astroparticle and high-energy physics
- **TeV PeV energies**
 - IceCube: Currently world's largest neutrino telescope
 - Breakthrough discoveries
- EeV
 - Solution: radio technique
 - Large attenuation length in ice (>1km)

IceCube-Gen2 radio

→ Only option to accelerate the research field: better detector (this project)

Deep-Learning-Based Trigger

- Data can't be stored continuously
- Current state of the art: Threshold-based trigger
 - Unavoidable thermal noise fluctuations dominate trigger
 - Thresholds need to be high enough to limit trigger rate on thermal noise
- Huge potential of improvement:
 - offline analysis: thermal noise can be rejected with high efficiency
 - Neural networks are very good at classification tasks
 - Proof-of-concept study ARIANNA collab. (... C. Glaser, ...), JINST 2022

Expected Improvements

Expected Improvements

doubling neutrino detection rate in IceCube-Gen2

Option 1: Second Stage Filter

Option 1: Second Stage Filter

Option 1: Second Stage Filter - Performance

Option 1: Second Stage Filter - Performance

Option 1: Second Stage Filter - Performance

Option 2: Continuous analysis of data stream

- Simplest option: Run CNN on overlapping chunks of data
- Trigger on CNN output
- Efficient FPGA implementation by calculating overlap only on last network layer

Option 2: Continuous analysis of data stream - Performance

Performance already halfway between moderate and optimistic benchmark

New DAQ Development

- New ADC generation (JESD204B interface)
 - High speed and low power (~1GHz, 12bit at 0.5W/channel)
 - Simpler compared to custom ASICS of previous hardware
 - Better data quality and opportunities for advanced triggers
- Also looking into Neuromorphic Computing (with Tommaso Dorigo + Fredrik Sandin)

Main science objectives of UHE neutrino astronomy:

Neutrino-Nucleon

Cross Section

Impact of NuRadioOpt

 \rightarrow 3x more precise measurement

Diffuse Flux

Point Sources

based on V. Valera, M. Bustamente, C. Glaser, JHEP 06 (2022) 105

Main science objectives of UHE neutrino astronomy:

Neutrino-Nucleon

Cross Section

Impact of NuRadioOpt

 \rightarrow 3x more precise measurement

V. Valera, M. Bustamente, C. Glaser, JHEP 06 105 (2022)

Diffuse Flux

→ expedite the detection of UHE neutrino fluxes
V. Valera, M. Bustamente, C. Glaser, PRD 107, 043019 (2023)

Point Sources

→ identify sources from deeper in our Universe, increasing the observable volume by a factor of three

D. F. G. Fiorillo, V. Valera, M. Bustamente, JCAP03(2023)026

Main science objectives of UHE neutrino astronomy:

Neutrino-Nucleon

Cross Section

Impact of NuRadioOpt

 \rightarrow 3x more precise measurement

V. Valera, M. Bustamente, C. Glaser, JHEP 06 105 (2022)

Diffuse Flux

→ expedite the detection of UHE neutrino fluxes by up to a factor of five
V. Valera, M. Bustame

V. Valera, M. Bustamente, **C. Glaser,** PRD 107, 043019 (2023)

Point Sources

→ identify sources from deeper in our Universe, increasing the observable volume by a factor of three

D. F. G. Fiorillo, V. Valera, M. Bustamente, JCAP03(2023)026

- Improvements equivalent to building a more than three times larger detector at essentially no additional costs
- NuRadioOpt timeline perfect for influencing IceCube-Gen2
- because we are already at the limit of logistical resources at the South Pole,
 NuRadioOpt is the only option to accelerate UHE neutrino science in the next decade

Hinge Loss

- No sigmoid activation
- Penalize (only) wrong predictions

Objective 2: End-To-End Optimization

Current status: Station layout has not been thoroughly optimized

- because MC tools and reco algorithms were not available -> changed with NuRadioMC/Reco
- because turnaround times are too large
- scaling relations are insufficient

Objective 2: End-To-End Optimization

V. B. Valera, M. Bustamante and C. Glaser, JHEP 06 (2022) 105 also I. Esteban, S. Prohira, J. Beacom, Phys. Rev. D 106, 023021

Science Overview: Cross Section

- Sensitivity comes from Earth attenuation
 - Angular resolution important
 - Horizontal events important

$$N_{\nu}(E_{\nu},\theta_z) \propto \Phi_{\nu}(E_{\nu})\sigma(E_{\nu})e^{-L(\theta_z)/L_{\nu N}(E_{\nu},\theta_z)}$$
$$L_{\nu N} \equiv (\sigma n_N)^{-1}$$

Current Trigger

-3m

-10m

20m

- Shallow:
 - high/low threshold crossing trigger for each LPDA
 - additional 2/4 time coincidence required
 - effective threshold ~4x Vrms
- Deep: Phased array
 - coherently summed waveforms to increase SNR by sqrt(n_antennas)
 - power integration trigger
 - effective threshold ~2-3* x Vrms

Christian Glaser

37

*: not a useful metric because dependent on bandwidth and group delay