

Fair Universe 2024: HiggsML Uncertainty Challenge

David Rousseau,

IJCLab-Orsay

with Paolo Calafiura, Ragansu Chakkappai, Yuan-Tang Chou, Sascha Diefenbacher, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham Khoda, Benjamin Nachman, Benjamin Thorne, Peter Nugent, Mathis Reymond, David Rousseau, Ihsan Ullah,

Daniel Whiteson

EUCaifCon, Amsterdam, May 2024

Background on Fair Universe Project

- 3 year US Dept. of Energy, AI for HEP project. Aims to:
 - Provide an open, large-compute-scale Al ecosystem for sharing datasets, training large models, fine-tuning those models, and hosting challenges and benchmarks.
 - **Organize a challenge series**, progressively rolling in tasks of increasing difficulty, based on novel datasets.
 - Tasks will focus on measuring and minimizing the effects of systematic uncertainties in HEP (particle physics and cosmology).
- Broad team in HEP, ML and computing involved in several previous challenges and benchmarks for HEP (e.g. <u>HiggsML</u> and <u>TrackML</u>, <u>LHC</u> <u>Olympics</u>, <u>Fast Calorimeter Simulation Challenge</u>) and wider (e.g <u>NeurIPS</u> <u>competition track</u>, <u>MLPerf HPC</u>); as well as <u>Uncertainty aware learning in</u> <u>HEP</u>

Measuring and minimizing the effects of systematic uncertainties in HEP

Bias and uncertainty in the fundamental sciences

Theory into Simulations

Estimate Systematic Uncertaintie

Exp/Obs reconstruction

Differences between simulation and data can bias measurements

Bias and uncertainty in ML in the fundamental sciences

- ML methods in HEP are often trained based on simulation which has estimated systematic uncertainties ("Z")
- These are then applied in data with the different detector state Z=?

 Common baseline approach: Train classifier on nominal data (e.g. Z=1) and estimate uncertainties with alternate simulations. Shift Z and look at impact or perform full profile likelihood

Increasingly sophisticated approaches

- Several focussed on decorrelation, e.g. augmentation; adx_2 -(tangent propagation etc.
- "pivot" Louppe, Kagan, Cranmer : arXiv:1611.01046
- "Uncertainty-aware" approach of Ghosh, Nachman, Whiteson PhysRevD.104.056026
 - Parameterize classifier using Z Ο
 - Measured on "Toy" 2D Gaussian Dataset and datas \bigcirc <u>Challenge</u> modified to include systematic on tau-engination $2^{1.50}$ Performs as well as classifier trained on true Z
 - \bigcirc
- Other novel approaches e.g. (not comprehensive)
 - Inferno: arxiv:1806.04743 Ο
 - Direct profile-likelihood: e.g. arxiv:2203.13079 Ο

Progress requires new datasets, metrics, and platform

- Uncertainty-aware papers demonstrated on single systematic uncertainty, with limited data
- Original HiggsML dataset too small for ambitious approaches (systematic uncertainty small compared to statistical uncertainty)
- How to scale methods to many values of Z? (training difficulty increases, profiling approach used is expensive)
- Can faster methods allow for directly evaluating profile likelihood?
- Need for novel metrics to evaluate uncertainty determination for such methods

7

Organize a challenge series, progressively rolling in tasks of increasing difficulty, based on novel datasets

Fair Universe: HiggsML Uncertainty Challenge

- Extension of previous HiggsML challenge from 2014 (a classification problem for Higgs decaying to Tau leptons based on final state 3-momenta and derived quantities):
 - 30 features : I,h,MissingET,up to 2 jets, and high level quantities like transverse masses
- Dataset : HiggsML 2014 data set on CERN Open Data portal doi:10.7483/OPENDATA.ATLAS.ZBP2.M5T8
- ⇒new Fair Universe dataset, with following improvements
 - Instead of ATLAS G4 simulation, use Pythia LO + Delphes
 - Numbers of events $800.000 \Rightarrow >50$ millions
 - Parametrised systematics (Nuisance Parameters) :
 - Tau Energy Scale : on had Tau Pt (and correlated MET)
 - Jet Energy Scale (and correlated MET impact)
 - additional randomised Soft MEt
 - background normalisation
 - W background normalisation (a subdominant poorly constrained BKG)
- Task : given a pseudo-experiment with given signal strength (==amount of signal), provide a Confidence Interval on signal strength

Fair Universe, David Rousseau, EUCaifCon, Amsterdam, May 2024

Task:				Fact Sheet Answers	Higgs Uncertainty Challenge			
#	Participant	Entries	Date of last entry	Method Name	Quantile Score	Interval	Coverage	Detailed Results
ō	ragansu	30	2024-01-22	Histogram_10	1.45	0.226	0.57	0
2	ragansu	30	2024-01-22	One_bin NLL	1.07	0.333	0.57	0
3	laurensslu	20	2023-12-01	cheat7	0.68	0.504	0.63	۲
4	laurensslu	20	2023-12-01	cheat7	0.61	0.544	0.68	0
5	laurensslu	20	2023-12-01	cheat4	0.31	0.732	0.61	0
6	laurensslu	20	2023-12-01	cheat4	0.16	0.852	0.71	0
7	laurensslu	20	2023-12-01	Cheat2	-0.44	1.55	0.62	0
8	laurensslu	20	2023-12-01	Cheat2	-0.74	1.375	0.55	0
9	ragansu	30	2024-01-22	tes_finder	-0.95	1.124	0.54	0
10	laurensslu	20	2023-12-01	Cheat2	-1.59	1.325	0.53	0
11	Ihsan Ullah	4	2024-01-18	Sascha sys aware 8	-2.69	0.329	0.47	۲
12	Rafał Masełek	10	2023-12-01	1binNLL	-2.9	1.233	0.5	٥
13	ihsanchalearn	16	2023-12-18	1 bin NLL	-2.9	1.233	0.5	٥
14	Rafał Masełek	10	2023-12-01	1binNLL	-2.9	1.233	0.5	۲
15	ihsanchalearn	16	2023-12-18	Sascha sys aware 8	-3.01	0.33	0.46	٥

sd

12

Systematic parameterisation

Systematic parameterisation

- provide to participant a systematic parameterisation script
- recompute all features and weight consistently
- e.g. for Tau Energy Scale

Fair Universe, David Rousseau, EUCaifCon, Amsterdam, May 2024

A simple Baseline Model

...to get people started

Baseline Model

- Train a simple classifier (dense NN, BDT,...)
- Bin the score for Background and Signal : B_i, S_i
- Parameterise as a function of nuisance parameter α B_i(α), S_i(α):
- Binned Negative Log Likelihood function as function of NP and mu
- For Each pseudo experiment
 - a. compute score distribution
 - b. NLL regress mu (and α but throw it away)
 - c. Returns mu 68% confidence interval
- works nicely for 1 NP, breaks down for more

• ...people can take it from there with the more sophisticated uncertainty-aware approaches mentioned earlier

Fit on one pseudo experiment

Fair Universe, David Rousseau, EUCaifCon, Amsterdam, May 2024

17

Large-compute-scale AI ecosystem ... hosting challenges and benchmarks.

Codabench/"Fair Universe" Platform

Evolution of Codalab https://www.codabench.org/

Fair Universe Platform: Current Codabench/NERSC integration

Conclusion

- a major new scientific competition on measuring Higgs cross-section,
 - taking into account/minimizing impact from modelisation systematics
 - winner to provide a narrow confidence interval with good coverage
- on Codabench platform with NERSC back-end for precise evaluation of submissions
- early prototype run as part of <u>Paris AI uncertainties workshop</u> in Nov 2023 and ACAT 2024
- to run June-Sep 2024
- submitted to NeurIPS 2024 competition track
- will be announced on : <u>Ihc-machinelearning-wg@cern.ch</u>
- A cosmology challenge (weak-lensing) is also in the pipeline