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CDM Open Question 

• CDM is a description of  the 
behavior of  dark matter, not a 
fundamental model
What is the fundamental nature of  dark 

matter?
• Many compelling theories for dark 

matter violate the CDM paradigm
• Low-mass halos → dark matter 

physics
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Bullock & Boylan-Kolchin, 2017



Measuring Halos: Strong Lensing
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“Statistical” Detection
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The Framework: Neural Posterior Estimation
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Individual Constraints
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Individual Constraints
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How much Substructure?How Big is the Ring?
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Individual Constraints
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Prior DominatedData Dominated
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Our Current Limitation?

Have neural-density based SBI methods 
already reached the information limit of  

the data, or are there methodology 
choices that are imposing artificial 

bottlenecks?
• NPE has theoretical guarantees, but 

only in the limits of  infinite data, a 
sufficiently expressive model, and 
perfect optimization
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Infinite Training Data
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+ +

9 ms 
differentiable, 
parallelizable

6-9 seconds
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Limits: Model 
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Limits: Training Set Size
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Our Current Limitation?

Have neural-density based SBI methods 
already reached the information limit of  

the data, or are there methodology 
choices that are imposing artificial 

bottlenecks? - No
• Pushing farther limited by power-

law scaling in images seen
• If  only we had a more efficient 

training set…
• … but I made the training set
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Sequential Neural Posterior Estimator
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Sequential Neural Posterior Estimator
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SNPE Comparison
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• Generate a set of  30 ‘true’ observations with the mean and scatter in 
the SHMF normalization from N-body simulations.

• Run sequential inference to answer:
•  Are we still limited by the same power-law scaling, or do we accelerate learning?
• Are we more data-efficient at the population level?
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Loss on Σ!"# Comparison
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SNPE Comparison
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• Are we still limited by the same power-law scaling, or do we accelerate learning?
• On our ‘difficult’ parameter-of-interest, sequential achieves 

performance gains equivalent to over three orders-of-magnitude 
more images

• Are we more data-efficient at the population level?
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Hierarchical Inference - NPE
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Hierarchical Inference - Comparison
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Hierarchical Inference - Comparison
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SNPE Comparison
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• Are we still limited by the same power-law scaling, or do we accelerate learning?
• On our ‘difficult’ parameter-of-interest, sequential achieves 

performance gains equivalent to over three orders-of-magnitude 
more images

• Are we more data-efficient at the population level?
• Unbiased population constraints that are ~5x more efficient per lens
• ~50 lenses to produce a 10% measurement compared to ~300 lenses
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Conclusions
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Strong Lensing
• We are not data limited, we are limited by our training sets
• Sequential methods drastically improve constraining power – similar 

improvements from the naïve approach would be computationally 
untenable
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Strong Lensing
• We are not data limited, we are limited by our training sets
• Sequential methods drastically improve constraining power – similar 

improvements from the naïve approach would be computationally 
untenable

Broader Implications
• The quality of  our training sets is not just determined by size
• As we employ SBI, we need to treat training set generation and model 

optimization as interconnected stages of  our analysis
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