Calibrating Tension Statistics with Neural Ratio Estimators

European AI for Fundamental Physics Conference, Amsterdam, 2024 - <u>htjb2@cam.ac.uk</u>

Harry Bevins with Thomas Gessey-Jones and Will Handley University of Cambridge

Calibrating Tensions

- 1. Why are we interested and how do we measure tension?
- 2. Calibrating with Neural Ratio Estimation
- 3. Demonstrations

Why are we interested?

Why are we interested in tension?

- Important to be able to independently observe and confirm experimental results
- When two experiments give different results we call this a tension
- Understanding where tension comes from can lead us to new physics and a better understanding of our instruments

 $\Omega_{\rm m}$

Measuring tension

- Parameter differences, goodness of fit degradation, suspiciousness (see 2012.09554 for a review)
- Here, interested in evidence ratio

$$R = \frac{P(D_A, D_B)}{P(D_A)P(D_B)} = \frac{Z_{AB}}{Z_A Z_B}$$

• For any pair of experiments, model and prior there is a distribution of in concordance R values

Measuring tension

- The fractional increase in our confidence in one experiment given data from another
- Dimensionally consistent and parameterisation invariant
- But prior dependent and hard to interpret
 - $R \gg 1 \rightarrow$ in concordance
 - $R \ll 1 \rightarrow$ in tension

Measuring tension

7

Calibrating with Neural Ratio Estimation

Neural Ratio Estimation

- Essentially just classifiers
- Take in two inputs A and B and estimate the probability that they are drawn from joint distribution vs independent

$$r = \frac{P(A, B)}{P(A)P(B)}$$

• Used for parameter inference

$$r = \frac{P(D,\theta)}{P(D)P(\theta)} = \frac{P(D \mid \theta)}{P(D)} = \frac{L(\theta)}{Z}$$

R with NREs

of
$$\log R = \log \frac{P(D_A, D_B)}{P(D_A)P(D_B)}$$

 $\log R \longrightarrow p = \sigma(\log R)$
Loss Function:
 $l = \frac{1}{N} \left[\sum_{i}^{N} y_i \log(\sigma(\log R)) + (1 - y_i) \log(1 - \sigma(\log R)) \right]$

Direct predictions or calibration?

European AI for Fundamental Physics Conference, Amsterdam, 2024 - htjb2@cam.ac.uk

Calibration of R

European AI for Fundamental Physics Conference, Amsterdam, 2024 - htjb2@cam.ac.uk

Examples

Analytic Example: Set Up

Define a linear model \bullet

$$D_A = M_A \theta + m_A \pm \sqrt{C_A}$$
$$D_B = M_B \theta + m_B \pm \sqrt{C_B}$$

•
$$n_{dims} = 3, n_{data} = 50$$

- Gaussian prior and likelihood \bullet
- Can analytically calculate $Z_A = P(D_A), Z_B$ and Z_{AB} and therefore get $\log R$
- Using Isbi package (https://github.com/ \bullet handley-lab/lsbi)

Analytic Example: Results

- Assess accuracy with changing prior width
- Performance is good for narrow priors
- Can push the performance for higher log *R* by tuning hyperparameters

Analytic Example Prior Depende

ence			
	7		
		σ_D	σ_A
Prediction	Truth	1.896	0.073
	Prediction	1.943	0.065
	/	-	
10 20			
	Track	$\frac{O_D}{1.070}$	O_A
CF	Dubdiction	$\frac{1.970}{2.070}$	0.001
		Z .079	0.047
	<u></u>		
10 20			
	//	-	
-77-77			
		σ_D	σ_A
	Truth	1.943	0.065
	Prediction	1.129	0.330
	╶───//- +}-		
7,7/1			

21cm Example: Set Up

- Looking for an absorption feature in the CMB a low frequencies
- Information rich signal that tells us about the properties of the first stars
- Observationally challenging and tension estimation is becoming more important [2112.06778]
- Two experiments observing in different bands
- Three scenarios

European AI for Fundamental Physics Conference, Amsterdam, 2024 - htjb2@cam.ac.uk

21cm Example: Results

A_B/A_A	σ_D	σ_A
0.75	$2.154^{+0.073}_{-0.063}$	$0.039^{+0.008}_{-0.006}$
1.00	$0.043^{+0.018}_{-0.027}$	$2.120^{+0.218}_{-0.207}$
1.25	$3.35^{+0.158}_{-0.001}$	0.001 ± 0.001

Conclusions

- Understanding tensions can help us identify new physics or instrumental systematics
- R statistic is an appropriately Bayesian choice
- We can use Neural Ratio Estimation to help us interpret the tension between different experiments
- Currently working on applications to BAO and CMB data sets
- Paper coming soon!

