

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EuCAIFCon 2024

> Characterizing High Energy Gamma-Ray Sources Using Deep Learning (& More...) ID: 141

S. Bhattacharyya*, F. Stoppa, R. Austri, S. Caron, G. Principe, D. Malyshev, G. Zaharijas, R. Nicolas et.al.,

Objective

Source: 5 years of Fermi-LAT observation (E>1 GeV)

Given a gamma-ray sky-map, can a DNN-based pipeline detect the point sources, predict precise locations (including uncertainties), and eventually, characterize them?

Objective

Source: 5 years of Fermi-LAT observation (E>1 GeV)

Given a gamma-ray sky-map, can a DNN-based pipeline detect the point sources, predict precise locations (including uncertainties), and eventually, characterize them?

Can these methodologies be applicable at a different region of the EM spectrum (e.g. Optical)?

Gamma-Ray Telescopes (Considered in this Study): Fermi-LAT & CTA

- Fermi Large Area Telescope (LAT)
- Space-based detector (collecting data from 2008 onwards).
- Sensitive to ~ $300 \text{ MeV} \le E \le ~ 100 \text{ GeV}$ photons.

- Cherenkov Telescope Array (CTA)
- Ground-based detector.
 - Two sites: La-Palma, Chile.
- Sensitive to $\sim 30 \text{ GeV} \leq E \leq \sim 100 \text{ TeV}$ photons.

Getting Started with Fermi-LAT: Supervised ML and Data Generation

- To learn a mapping from input to output based on example input-output pairs. 'Supervised Learning'
 - Only one 'instance' from real data; we prepare realistic simulated data.

Getting Started with Fermi-LAT: Supervised ML and Data Generation

- To learn a mapping from input to output based on example input-output pairs. 'Supervised Learning'
 - Only one 'instance' from real data; we prepare realistic simulated data.
- Create a set of sky-maps with astrophysical source properties based on the Current Data (10 years of Observation).
 - Include properties of Active Galactic Nuclei (AGNs), Pulsars (PSRs) and Supernovae (SNe).
- 10 years of observation period [2008-2018].
 - Energy range 300 MeV to 1 TeV; 6 energy bins;
- Spatial resolution of the sky-maps increases with increasing energy.
 - From 0.8° at 0.3 GeV to $0.1^{\circ} \ge 7$ GeV.

Mock Data Preparation:

• Generating skymaps: Use a simulator [Fermitools]: Convolve astrophysical source models and detector response.

 Random patches (locations of sky) are used for training data. Reduces the possibility of localization network 'learning' the background and not the source.

Mock Data Preparation:

- Generating skymaps: Use a simulator [Fermitools]: Convolve astrophysical source models and detector response.
- Random patches (locations of sky) are used for training data. Reduces the possibility of localization network 'learning' the background and not the source.
 - Trained using one Interstellar Emission Model (IEM) and tested with a different IEM.
 - Some faint sources may be hidden in the IEM itself;

IEM small scale structures

Misidentification of Faint Sources

EuCAIFCon 2024/05, Amsterdam

Why Use Deep Learning for this Task?

- Develop a complementary method to the likelihood method (detection, localization, flux estimation)
 - Detection Likelihood: $TS = \log\left(\frac{L}{L_0}\right)$; L_0 : Likelihood without the source, L: Likelihood with the source.
- Machine learning including Deep Neural Net has been used to classify sources based on the catalog itself, including searching for various source classes from unidentified objects.
 - 'Multi-class classification of γ -ray sources & excess of GeV γ -rays near GC'; D. Malyshev Poster Id: 67, Explainable AI.

Why Use Deep Learning for this Task?

- Develop a complementary method to the likelihood method (detection, localization, flux estimation)
 - Detection Likelihood: $TS = \log\left(\frac{L}{L_0}\right)$; L_0 : Likelihood without the source, L: Likelihood with the source.
- Machine learning including Deep Neural Net has been used to classify sources based on the catalog itself, including searching for various source classes from unidentified objects.
 - 'Multi-class classification of γ -ray sources & excess of GeV γ -rays near GC'; D. Malyshev Poster Id: 67, Explainable AI.
- Detecting point sources using the traditional likelihood method depends on modeling the background.
 - Possibility of IEM Model independent results?

• Possibility of extending the pipeline to test its capability at other wavelengths.

Data Analysis Pipeline:

- Detection + Localization
 - Segmenting source pixels from background pixels.
 - Find the center of the source pixels;

- U-Net (Modified)
- Laplacian of Gaussian/K-Means

Data Analysis Pipeline:

- Detection + Localization
 - Segmenting source pixels from background pixels.
 - Find the center of the source pixels;

- U-Net (Modified)
- Laplacian of Gaussian/K-Means

- Location Uncertainty Estimation
 - Regression network; Refined location + Uncertainties.
- Flux Estimation (+ Uncertainties):
 - Same as above; Estimate the flux with uncertainties.

Data Analysis Pipeline:

- Detection + Localization
 - Segmenting source pixels from background pixels.
 - Find the center of the source pixels;

- U-Net (Modified)
- Laplacian of Gaussian/K-Means

- Location Uncertainty Estimation
 - Regression network; Refined location + Uncertainties.
- Flux Estimation (+ Uncertainties):
 - Same as above; Estimate the flux with uncertainties.
- Classification:
 - Binary/Multi-class classification.

Performance Evaluation on Simulated Data: Precision (Purity) and Recall (Completeness)

Comparison of network performance with Front Only (F) and 2 times Front Data. (2F)

'Front': Photons converted in the Front part of the detector (thicker calorimeter==better reconstruction).

Vertical Blue Line: LAT 4FGL catalog threshold.

EuCAIFCon 2024/05, Amsterdam

Location Reconstruction with Deep Neural Nets

- After the initial location prediction (LoG), we further refine the location using deep ensemble.
 - A regression network; Ensemble of 15 different networks; Aggregate and average for location uncertainty prediction.

Building a Complementary Gamma-Ray Catalog

- Long-term target: Apply our algorithm on the real data & Build a complementary gamma-ray catalog.
- Already tested for simulated data:
 - 'Identification of point sources in gamma rays using U-shaped convolutional neural networks and a data challenge' [arXiv: 2103.11068]; A&A (A62, 2021); B. Panes, S. Caron, R. Austri, G. Zaharijas et.al.

Building a Complementary Gamma-Ray Catalog

- Application on real data.
 - Ongoing
- Sources found by ASID
 - Blue: True sources
 - Red: False Positives

(After classification)

Can We Extend The Pipeline for Other Wavelengths? (Localization)

- Trained and tested with MeerLICHT data
 - 'ASID-Light: Fast Optical Source Localization'; [arXiv: 2202.00489]; A&A (A109, 2022); F. Stoppa et.al
- Automatic rejection of CR contaminants, satellite trail.

Can We Extend The Pipeline for Other Wavelengths? (Localization)

- Trained and tested with MeerLICHT data
 - 'ASID-Light: Fast Optical Source Localization'; [arXiv: 2202.00489]; A&A (A109, 2022); F. Stoppa et.al
- Automatic rejection of CR contaminants, satellite trail.
- Try transfer learning with Hubble data
 - Hubble PSF: 0.11 arcsec, MeerLICHT telescope PSF: 2-3 arcssec.
- Also tested for WISE data.

Can We Extend The Pipeline for Other Wavelengths? (Characterization)

- Once detected proceed to classify stars and galaxies;
- 'ASID-C: Star-Galaxy Classification'; [arXiv: 2307.14456]; A&A (A109, 2023); F.Stoppa et.al.,
- Better performance than SourceExtractor at high stellar dense region
 - Better calibration of classification probability, less overprediction of galaxies

Relative difference of actual and estimated number of galaxies.

SourceExtractor

ASID-C

Can We Extend The Pipeline for Other Wavelengths? (Characterization)

- Once localized, estimate flux with uncertainties (single band image cutout).
- Two step network; Mean Variance Estimator Network
- 'ASID-FE: Flux Estimation & Uncertainty Characterization'; [arXiv: 2305.14495]; A&A (A108, 2023); F. Stoppa et.al.,
 - Performs better in crowded field compared to source extractor; Well-calibrated uncertainty

Predicted flux percentage error at two different levels of crowdedness between ASID-C and Source Extractor

Can We Apply This for CTA Simulated Data (Characterization)?

CTA Galactic Plane Survey (GPS);

Observation of the galactic plane with CTA telescope in the inner latitude region $|b| < 6^{\circ}$

Total observation of 1620 hours over 10 years.

CTA Source Characterization (Example Simulated Sources)

C0: *σ* < 0.1

C1: 0.1<*σ* < 0.3

C2: $\sigma > 0.3$

Target: Classify them based on their extensions

CTA Source Characterization (Network Activation Maps)

What parts of an image were used in different filters?

2

4 ·

6

8

10 -

12 -

14 ·

16 ·

0

For a 'C1' Source

CTA Source Characterization (Extension Classification Results)

97% classification accuracy between point and extended sources.

(a) CF Matrix; Rows: True labels; Cols: Predicted labels. _{EuCA}(b) 27D TSNE embeddings from fc1 layer (Fig. 3).

CTA Source Characterization (Flux Estimation)

- Preliminary results: Given only point sources we could achieve better performance than published results.
- Left: Results from the test set in our calculation; Integrated flux in the range 70 GeV 1 TeV.
- Right: Comparison with likelihood calculation [Plot from CTA GPS paper;].

Analysis Pipeline (Current Status & Future Prospects): Broad Overview

Analysis Pipeline (Current Status & Future Prospects): Broad Overview

data? Replace the simulator with DDPM network.

Little More....

- Possibility of collaboration? If our pipeline helps or if you want to modify for your own data ③
- Possibility of recent graduates to apply for SMASH Fellowship; Marie-Curie Cofund Fellowship [2023-2028]

Backups

Multi-Input U-NET Structure

Produces a binary mask (1: Source, 0: Rest), Same resolution as the highest resolution input.

EuCAIFCon 2024/05, Amsterdam

Classification Network

- Localized sources are then acting as inputs for a separate classification network.
- Cut a box around the predicted location and feed into the network.

- Classification Network is a 3D CNN.
- Input shape (W, H, 10, 6).
- 10 years, 6 energy bins.
- Class-imbalance problem

CTA Source Classification-Network

4FGL Catalog; 8 years of Data, 5064 Sources

Ref: Fermi-LAT, 4FGL ApJS 247, 33 (2020)

BCU

Simulation: Mock Catalog Generation: Example for BLLac: LP Parametrization

- Spectral shape:
 - Log Parabola
 - $\frac{dN}{dE} = K \left(\frac{E}{E_0}\right)^{-\alpha \beta \log\left(\frac{E}{E_0}\right)}$
 - AGNs (BLLac, FSRQ, PWN, SPP)
- Distribution in Sky:
 - BLLac, FSRQ : Uniformly distributed over the whole sky.
 - PSR, PWN/SPP : Uniform distribution in longitude
 - Latitude distribution peaks at the plane.

Training Data & Localization Scheme

- Images of full sky data in 6 energy bins [0.3 GeV 1 TeV].
- Step1: Implement U-Net like algorithm. Segmentation task.
 - Each pixel is assigned with a label score (≈ 1 , source pixel; ≈ 0 , otherwise).

- Step2: Apply Laplacian of Gaussian (LoG)
 - Find the center of source pixels in (X, Y) and convert to (Lon, Lat).

Assimov & Poisson Patches:

Dependence of Location Reconstruction on Source Flux

On the training set (simulated), we have flux information;

Further check that the brightest sources are indeed predicted with better accuracy. X: Integrated Flux; Y: Hav. Dist.

Comparison of Location Reconstruction

94% of the detected sources' locations are within 0.15° from the true locations

Also for the 4FGL 'associated' sources we show the haversine distance for:

4FGL location vs. Association location

Source characterization: Flux Estimation

We follow up on the detected sources: Flux Estimation

Flux distribution of all sources vs Detected sources is shown here.

Use a simple CNN (7 layers) for the regression task.

- Given an input image (patch with a source at the center) and corresponding integrated flux;
 - Network learns to regress to mean. Simple 'Mean Squared Error'.
- Outputs from the ensemble of networks are then used for uncertainty prediction.
 - Ongoing; Hyperparameter checks and
 - Uncertainty prediction.

Current Status & Upcoming Tasks:

- Finalize the analysis pipeline and apply it to real data.
- Previously we applied to real data and Benoit helped to check with 4FGL association pipeline.
 - This led to refinement in location uncertainty calculation, SNR calculation, and eventually addition of Flux estimation part.
- Check the significance of the sources at the predicted location with Fermipy; Especially the ones that are 'new'.
 - Giacomo currently helping with this.
- Source separation capability check with MC simulation; If a bright source/faint source close by to an existing source;
 - Dima currently helping with this.
- Whether it is possible to recover the fainter sources (DR2 sources with significance between $5\sigma 10\sigma$) by lowering the segmentation threshold?
- Create a new catalog and check with the association pipeline (Benoit will help).
- Any comments/suggestions are very welcome ③

Example Luminosity for Mock Catalog (BLL):

Performance Comparison with Background Models:

Example Numbers: Trained & Test Data both w 'B1': Detected sources: 3353 (63%) Trained with 'B1', Test with 'B2': 3157 out of 3353 sources were found. Even if we use two different backgrounds, we can recover \sim 93% of the sources.

TP: True Positive, FP: False Positive

Mask Radius vs Network Performance (Detection)

