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Tensor Networks

• Collection of tensors connected by contractions
• Intuitive graphical language

• Tensors are notated by shapes
• Indices are notated by lines emanating from these shapes
• Connecting two index lines implies a contraction

• Approximate arbitrarily complex many-body quantum systems 
preserving its most important properties
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Tree Tensor Networks for ML

• TN with a tree structure
• Bond dimension (𝜒𝑙) controls the expressivity of the TTN

• Input features (𝑁) are mapped in a higher dimensional space (𝐷)
• Number of layers 𝐿 = log2𝑁

• 𝜒𝑙  ideally scales with the layer as 𝐷2𝑙

• Reduce the complexity of the problem artificially forcing  𝜒𝑙 = min(𝐷2𝑙 , 𝜒0) 



Methods

• Goal: binary classifier with ultra-low latency
• Training is done in software 
• Weights are loaded in the dedicated hardware (FPGA) for inference
• Inference consists of only linear transformations
• FPGA is a programmable devices that combines an array of 

combinatorial logic blocks with a mesh of interconnections
• Look-up tables, storage elements, fast carry chains
• Dedicated hardware for specific functions (RAM, PLL, Ser/Des)
• Digital Signal Processor (DSP) for arithmetic functions (adder, multiplier, 

accumulator)
• Hardware Description Language (HDL) for circuit description
• High degree of parallelization but limited resources



Training

• Pythonic custom classes
• Class for representing TTN as a Torch NN 

module
• ML approach for optimizing TTN with SGD

• Canonicalization
• QR decomposition to isometrise towards a target 

node
• Tested on two datasets

• Iris – N=4, D=2, 𝜒0=4            99% Accuracy
• Titanic – N=8, D=2, 𝜒0=3,4,8,16            79% Accuracy

• Methods to measure physical quantities
• Entropy of each link
• Expectation value of a generic n-sites observable

• Ranking of the input features
• Complexity reduction of the TTN
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Tensor contraction

• Inference means to contract the full tree

• Contraction operation in an order-3 tensor: 𝑐𝑘 = σ𝑖𝑗 𝑎𝑖𝑏𝑗𝑊𝑖𝑗𝑘

• DSP has two inputs        two multiplication stages are needed 
• We explored two degree of parallelism for the contraction

• Full parallel – where the exploited number of DSPs is maximal
• Partially parallel – where we introduce a reuse of the DSPs  



Full parallel contraction

Number of DSPs: 𝜒𝑙 + 1 𝜒𝑙−1
2



Partially parallel contraction

Number of DSPs: (𝜒𝑙−1
2 + 1)



Execution flow

• Feature map implemented in LUTs
• Node computation is independent
• Each layer is computed in parallel
• Layers are fully pipelined
• After full contraction, output is a scalar

1 2 3



Hardware setup
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Hardware validation

• 16-bit fixed point <2,14> data 
type

• Software/Hardware perfect 
matching

• Several weight-quantization 
alternatives tested

• DSP/LUT vs quantization shows 
promising results



Resources
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𝑂 > 1 for multi-class 
prediction
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Latency
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Forthcoming works

• Validation with a real dataset from LHCb 
for b-tagging

• Integration in trigger system of HEP 
experiment 

• Moving towards a higher-level description 
(HLS)        Future integration to existing ML 
frameworks?

• Online training for fast calibration of the 
network parameters
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