
Hardware implementation of
quantum machine learning predictors

for ultra-low latency applications
Lorenzo Borella, Alberto Coppi, Jacopo Pazzini,
Andrea Stanco, Andrea Triossi, Marco Zanetti

University of Padova

“This work is partially supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing,

funded by European Union – NextGenerationEU”.

Introduction

Tensor
Networks

Machine
Learning

Real-Time
Applications

Reconfigurable
Computing

Field
Programmable

Gate Array

Tensor Networks

• Collection of tensors connected by contractions
• Intuitive graphical language

• Tensors are notated by shapes
• Indices are notated by lines emanating from these shapes
• Connecting two index lines implies a contraction

• Approximate arbitrarily complex many-body quantum systems
preserving its most important properties

𝑣𝑖 𝑀𝑖𝑗 𝑇𝑖𝑗𝑘 ෍

𝑗

𝑀𝑖𝑗𝑣𝑗

𝜓
MPS

Tree Tensor Networks for ML

• TN with a tree structure
• Bond dimension (𝜒𝑙) controls the expressivity of the TTN

• Input features (𝑁) are mapped in a higher dimensional space (𝐷)
• Number of layers 𝐿 = log2𝑁

• 𝜒𝑙 ideally scales with the layer as 𝐷2𝑙

• Reduce the complexity of the problem artificially forcing 𝜒𝑙 = min(𝐷2𝑙 , 𝜒0)

Methods

• Goal: binary classifier with ultra-low latency
• Training is done in software
• Weights are loaded in the dedicated hardware (FPGA) for inference
• Inference consists of only linear transformations
• FPGA is a programmable devices that combines an array of

combinatorial logic blocks with a mesh of interconnections
• Look-up tables, storage elements, fast carry chains
• Dedicated hardware for specific functions (RAM, PLL, Ser/Des)
• Digital Signal Processor (DSP) for arithmetic functions (adder, multiplier,

accumulator)
• Hardware Description Language (HDL) for circuit description
• High degree of parallelization but limited resources

Training

• Pythonic custom classes
• Class for representing TTN as a Torch NN

module
• ML approach for optimizing TTN with SGD

• Canonicalization
• QR decomposition to isometrise towards a target

node
• Tested on two datasets

• Iris – N=4, D=2, 𝜒0=4 99% Accuracy
• Titanic – N=8, D=2, 𝜒0=3,4,8,16 79% Accuracy

• Methods to measure physical quantities
• Entropy of each link
• Expectation value of a generic n-sites observable

• Ranking of the input features
• Complexity reduction of the TTN

Training

• Pythonic custom classes
• Class for representing TTN as a Torch NN

module
• ML approach for optimizing TTN with SGD

• Canonicalization
• QR decomposition to isometrise towards a target

node
• Tested on two datasets

• Iris – N=4, D=2, 𝜒0=4 99% Accuracy
• Titanic – N=8, D=2, 𝜒0=3,4,8,16 79% Accuracy

• Methods to measure physical quantities
• Entropy of each link
• Expectation value of a generic n-sites observable

• Ranking of the input features
• Complexity reduction of the TTN

Tensor contraction

• Inference means to contract the full tree

• Contraction operation in an order-3 tensor: 𝑐𝑘 = σ𝑖𝑗 𝑎𝑖𝑏𝑗𝑊𝑖𝑗𝑘

• DSP has two inputs two multiplication stages are needed
• We explored two degree of parallelism for the contraction

• Full parallel – where the exploited number of DSPs is maximal
• Partially parallel – where we introduce a reuse of the DSPs

Full parallel contraction

Number of DSPs: 𝜒𝑙 + 1 𝜒𝑙−1
2

Partially parallel contraction

Number of DSPs: (𝜒𝑙−1
2 + 1)

Execution flow

• Feature map implemented in LUTs
• Node computation is independent
• Each layer is computed in parallel
• Layers are fully pipelined
• After full contraction, output is a scalar

1 2 3

Hardware setup

PCIe

FPGA

Server KCU1500
Kintex Ultrascale

PCIe
DMA TTN

• TTN deployed on hardware accelerator
• Offloading of the TTN inference
• Application on top of Xilinx DMA drivers

AXI Stream

Config
RegistersAXI

Lite

Hardware validation

• 16-bit fixed point <2,14> data
type

• Software/Hardware perfect
matching

• Several weight-quantization
alternatives tested

• DSP/LUT vs quantization shows
promising results

Resources

෍

𝑙=1

𝐿

𝜒𝑙−1
2 (𝜒𝑙 + 1)

𝑁

2𝑙

෍

𝑙=1

𝐿

(𝜒𝑙−1
2 + 1)

𝑁

2𝑙

Total number of DSPs

𝑂 > 1 for multi-class
prediction

Resources

෍

𝑙=1

𝐿

𝜒𝑙−1
2 (𝜒𝑙 + 1)

𝑁

2𝑙

෍

𝑙=1

𝐿

(𝜒𝑙−1
2 + 1)

𝑁

2𝑙

Total number of DSPs

Latency

Δ𝐷𝑆𝑃෍

𝑙=1

𝐿

2 + log2(𝜒𝑙−1
2)

Δ𝐷𝑆𝑃෍

𝑙=1

𝑁

𝜒𝑙−1
2 + 𝜒𝑙 + 1

Total latency

Latency

Δ𝐷𝑆𝑃෍

𝑙=1

𝐿

2 + log2(𝜒𝑙−1
2)

Δ𝐷𝑆𝑃෍

𝑙=1

𝑁

𝜒𝑙−1
2 + 𝜒𝑙 + 1

Total latency

Forthcoming works

• Validation with a real dataset from LHCb
for b-tagging

• Integration in trigger system of HEP
experiment

• Moving towards a higher-level description
(HLS) Future integration to existing ML
frameworks?

• Online training for fast calibration of the
network parameters

	Slide 1: Hardware implementation of quantum machine learning predictors for ultra-low latency applications
	Slide 2: Introduction
	Slide 3: Tensor Networks
	Slide 4: Tree Tensor Networks for ML
	Slide 5: Methods
	Slide 6: Training
	Slide 7: Training
	Slide 8: Tensor contraction
	Slide 9: Full parallel contraction
	Slide 10: Partially parallel contraction
	Slide 11: Execution flow
	Slide 12: Hardware setup
	Slide 13: Hardware validation
	Slide 14: Resources
	Slide 15: Resources
	Slide 16: Latency
	Slide 17: Latency
	Slide 18: Forthcoming works

