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MUCCA

Multi-disciplinary Use Cases for Convergent new Approaches to Al explainability

Collaboration that brings together researchers from different fields: High Energy Physics, Medicine,
Neuroscience and Computer science

Goal to study xAl in heterogeneous
cases quantifying strengths and
solving weaknesses

of new and state of the art methods
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WP2: HEP detectors

Application of Al-methods to X ‘
calorimeter detectors WP3: HEP real time systems

on Deep Learning applications WP: HEP Physics RA
S ) (PADME). xAl to improve performances Develop Al-based real time selection
Appllcatlon of Al-methods to and systematics comprehension algorithms for FPGAs at ATLAS. Use xAl

searches for New Physics at ATLAS
@LHC. xAl to improve transparency

and impact of systematics errors ‘ /
WP7: xAl tools WP4: Medical Imaging

& Survey of XAl methods relevant for “ Develop xAl pipeline for segmentation
the use-cases, develop XAl usage of brain tumours in magnetic resonance

methods to understand complex systems

Three phases:
1. Apply XAI-NPUT techniques
2. Identify shortcomings and metrics
3. Get new transparent algorithms

pipelines: analysis of results imaging. Use publicly available
databases for XAl developments,
‘ focusing on explainability of training
strategy
> Afew of the tested XAl models: WP6: Neuroscience WPS: Functional imaging
Learning most important features for a given Test xAl techniques to uncover TestleI meth?dology In respiratory S%/S'Fems'
prediction -> Saliency maps computational brain strategies Analyse complex systems (passage of air
Estimating training data influence -> Gradient and selection of dynamical neural and mucus) to derive model and test xAl
tracing , Datamodels , Trac-In models

I WP7 Publications: Hassija, V. et al. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn Comput 16, 4574 (2024) I 2



https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/2002.08484
https://arxiv.org/abs/2002.08484
https://arxiv.org/abs/2202.00622
https://arxiv.org/abs/2002.08484

XAl for high energy physics: outline

eXplainability (XAl) as bridge between the Al expert and scientists:

e How to select a good algorithm and a valuable XAl method?
e How to combine the explanations?

Let’s find out how to eXplain the explanation!
Offline High Energy Physics applications useful as they offer a “fully” known pipeline: maximise signal
efficiency and background rejection, understand events through features (WP1). Applications in Real Time
System and detector developments equivalently relevant (WP2 and WP3).

This talk focus: Searches for new physics at the ATLAS experiment
e DARK PHOTON: light long-lived particles belonging to a new hidden sector not yet discovered because too
feebly interacting with ordinary matter.
e SUSY: search for dark matter candidates resulting from the decay of new particles predicted by Supersymmetry.

In the backup:
e Real Time HEP systems — trigger at ATLAS, WP3 (flash talk and poster)
e Detector — development of PADME experiment Electromagnetic Calorimeter, WP2 :



https://indico.nikhef.nl/event/4875/contributions/20314/attachments/8192/11823/EuCaif24_russo_slide.pdf

Search for dark-photon at ATLAS

» Dark photons, foreseen in hidden sector models, are produced through SM-like Higgs decays, and decay in electrons, muons or pions 2>
the “signature” is a collimated “jet” of leptons: displaced-lepton jet (DPJ)

« Standard object classification problem where a signal dark-photon leaves different signature in the detector wrt background. ML
discriminator (3D-CNN) developed for the publication(s) = uses image classification trained to distinguish background processes from
signal mapping clusters of particles jets in 3D coordinates
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233 QCD multi-jet MC

Sampling

Entries normalised to unit area

QCD Tagger Score

exploit the calorimeter granularity to parametrise the
energy deposits: X, y, z, energy 3D jet images: Train a CNN

HOWEVER: Very sparse images -> sub-optimal

“Search for light long-lived neutral particles from Higgs boson decays via vector-boson-fusion production from pp collisions at Vs = 13 TeV with the ATLAS detector”, submitted to EPJC (Inspire)
As well as following publication exploiting VBF signatures: https://arxiv.org/abs/2311.18298 4



https://inspirehep.net/literature/2728869
https://arxiv.org/abs/2311.18298
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-05/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-05/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-05/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-05/

Dark-photon using GNN

Still use image classification trained to distinguish background processes from signal mapping clusters of particles jets in 3D coordinates

Use of additional higher level variables can be added as features to further improve the network performance, although the goal is to have
them already ‘learned’ by the network by using only the low level inputs

ATLAS calorimeter system

Sampling
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Graphs: Train a fully optimised GNN

Small cloud space objects, Efficient and easy to manipulate » A visual representation of Jet 3D
images using node-by-node

correspondence with an

upgraded graph structure

Procedure:
use ~500k images from signal (DPJ) and background (QCD jets) to build input dataset

test impact of decisions taken a priori (3 models), implement eXplainability tools: PyG explainers (e.g., GNN Saliency Maps)
6
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and Captum’s data influence modelling (e.g., Traclin)



https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
https://captum.ai/api/influence.html

Graph Building and Performance

Dataset building:
e Node for every cluster in the calorimeter
e Normalized cluster energy and position as node attributes*
e Edge built if spatial covariant distance “DR” between two nodes is within an optimized distance
parameter
e Covariant distance normalized as edge weight

Graph Pre-processing:
e Remove isolated and self-connected nodes
e Retain largest subgraph only to remove calorimeter noise
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Model optimization and XAl implementation:
e Test multiple models

o  Model 0 No Preprocessing same as CNN Benchmark data (in graphs)

o Model 1 Optimised DR = 0.6 within calo layers and 0.3 intra-calo layers (cuts based on
performance metrics like accuracy and purity)

o  Model 2 Optimised number of nodes/edges/subgraphs: removing isolated nodes and
disconnected sub-leading subgraphs made sense from a physics intuitive perspective and was
not the best or at least similar with performance and eXplainability metrics

e Performance evaluation and comparison with 3D-CNN as Benchmark

e Main XAl layer (retrain): TRAC-IN* as data influence metric implemented producing proponents and
opponents to any post-training data sampling (e.g., TP, FP & TN sets)

e Additional XAl layers (optional retraining): GNN and PYG Saliency Maps to explain-the-explainer
on the top-k nodes/edges level for any prop/opp sampling
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DR as distance

XAl Data Analysis | 1

i bk & o . £, pod s .50
T b £, et b . et ek 690

j Model 0 ‘ Model 1

1
[Propo 0 [Opponent] Label:1 1P Labe [Opponent] Label 1
0
2 3 1
{
: |
! L
i
g 2 0 I
g ‘—/ o \ov &
o o, o o
Praaas 0, %®
preponents indices: tenser(|[92329]])
proponents isdices: tensor([114927211) opponents indices: tensor( (179611}
opponents indices: tensor( [[9445])}
L J
I 1 045 .
030 \
0.015 0.015 L
l o ("
| o | 0000
-0.015 o018
0.030 -0.030
o - 2 A = i
” : . 0.045 SO -0.045 0
S ) 2 £]
5 ~ N
<4 % 3 &
a, o o o > o S
N = 2 i ¢ Ay o o, ©
o b
s s e & . 2, o - o
2D 9 o - o7 A ¢
\ > o
<
2p0.0 <
0£0.0
€100
o000 | ==y | I 2
2100
= 0£0.0
2»0.0-
0 1
P 2,
) a
. % A TR i 8
n @
B %, ® Qe
) A - N
% A




XAl Data Analysis

» FP proponents are entirely

_— Model 1 background as expected
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XAl Data Analysis
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» Saliency Maps masks both nodes and edges show consistent
selections majority of nodes and edges retained are from EMB

layer 0

» FP proponents are entirely
background as expected
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XAl Data Analysis
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Saliency Maps outputs in 2D plots showing reconstructed JetpT against Energy ratio for each of the 4 layers

Trac-In results show steady and consistent trustworthy results by reproducing nearly identical best scoring proponent-opponent major pair for all

instances of FPs set.

Trac-In proponents and opponents do not provide self contained explainability but gives more coherent outputs under Model 1 criterium.

Saliency Maps are essential to explain Captum clear but open ended explainability, i.e., proponent/opponent minimal prototyping needed.

2D plots on the right and top histos from previous slide show reduced activity in layer 0 (low pT range) for FP Proponents as an instance
11



XAl Recycling

% Model 1 retrained after removing Global

Influencers/outliers “Gls” only

outlier training sample

— gradient vector for 2y,

— for an outlier training sample

de’
d
de’

e for a typical training sample
€

Precision =

True Positives
True Positives+False Positives

i True Positives
Recall = True Positives+False Negatives

% Model 1 retrained after removing Gls and

proponents FP, Gls and opponents of
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https://arxiv.org/pdf/2003.11630

Preliminary Conclusions for Dark Photons

From Dark Photons pipeline we could draw some insights from eXplainability layers with the following:

1. Filtering out Gls did produce local data influencers that are relatable in physics terms: Shape of graphs are in coherence
with what we expect from Signal vs Background Jet structures to be.

2. Proponents of TP and opponents of both TN and FP were almost totally Signal events, while the opposites were
Backgrounds as expected.

3. On the analysis level, we could preliminarily deduce that extra calorimetric activity in Layer 0 is affecting the performance of
the overall training. A fair comparison of the model, is made on all level of explainability and trends are especially important

when persisting to Saliency Maps; being eXplainer of local data influence eXplainers.

4. When filtering, resampling based on XAl results and retraining we notice slight improvements on some metrics but not
strong enough to claim general supremacy.

5. Based on 4, we see the need for more powerful self-inherently explainable models like Transformers and foundational
models and we propose an example in the following test study with SUSY analysis.

%  More details of the study will be found in the paper (out very soon)... stay tuned!



SUSY search at ATLAS: chargino-neutralino
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,'7 ‘ E * In our project, develop GNN and Graph transformers
ol < e e -> Build graph for each event, one node for each

< = v particle and different features in nodes

o ——— - Test multiple models and evaluate performance
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mean(|SHAP value|) (average impact on model output magnitude)

“Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum and in pp collisions at Vs=13 TeV with the ATLAS detector”, JHEP 12 (2023) 167
Datasets and results published (CERN_opendata and hepdata) and disseminated here 14



https://link.springer.com/article/10.1007/JHEP12(2023)167
https://opendata-qa.cern.ch/record/28100
https://atlas.cern/Updates/Briefing/SUSY-Needles

SUSY Pipeline: a closer look

Particle | Feature 1 | Feature 2 | Feature 3 | Feature 4 |
------------------- e L B e
jetl | ‘'pTi1 | 'etaj1 | phij1 | 'j1_guantile' | nan
jet2 | 'pTj2 | 'etaj2 | phij2 | 'j2_quantile' | nan
jet3 (optional) | 'pTj3 | '‘etaj3 | 'phij3"* | 'j3_quantile' | nan
bl | ‘'pThl | 'etabl | phibl | 'bl_quantile' | 'bim’
b2 | ‘'pTb2’ | 'etab2 | phib2 | 'b2_quantile' | 'b2m’
lepton | ‘'pTl1 | 'etall | phill | nan | nan
energy | 'ETMiss' | nan | 'ETMissPhi’' | nan | nan
Features of nodes
Dataset

» Each row of the dataset contains 1 graph of 6 or 7 nodes.
« Each graph is fully connected.
« Each graph has a maximum of 6 features.

Three types of graphs:

« Signal: SuSy Dark matter MC candidate events
« Background1: top-antitop quark pair decay Jets
* Background2: Single top quark decay Jets

> Training a graph based model that performs
binary classification (i.e. recognizes signal and
background events)

Feature 5 | Feature 6 |

nan |
nan |
nan |
nan |
|
|
I

nan
nan
‘'metsig_New'

Event signal_336011

O

@ jet1, cirde
@ jet2, cirde
b1, circle
@ b2, circle

O lepton, cirde

O energy, square

4

0

Representation of a Graph

Signal events: 450k (same as BDT)
» Background1 events: 590k (BDT trained on 6m)
» Background2 events: 240k (BDT trained on 796k)

My,
My
A
P,
bl quant
AR 1y by)
mer
P,
"ll
AR by by

1 quant
M(l 1.b2)
i,
My
J1 quane
Pl,
N2
Mb1
Pjs
Moz

\
>
i

features:

ML variable inputs

A¢(, pissy [l

P
Pr
Py
Py
Phy

ATLAS Simulation
V5 = 13 TeV

= Signal
W+ jets
W Other
s t

s Single Top

o
&8

¢ 0.25 0.50 0rs

100 125 150 15

mean(|SHAP value|) (average impact on model output magnitude)

15



SUSY GNN Preliminary Results and Interpretation
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* The GNN learn from individual input features and "transfer” knowledge to complex variables without need to use them
for training like in XGBoost
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SUSY GNN results and interpretation

* Occlusion tests to understand how the network learns

» Hidden features progressive test:

¢ Alljet1-3 features,

The E'T"iSS feature,

The feature for Opmiss/

All ¢ features,

All jet1-3, bl and b2 features,

o
o

Default ROC curve (AUC = 0.83)
w— Al $ removed (AUC = 0.83)
= @ MET removed (AUC = 0.82)
w— jetl-3 removed (AUC = 0.81)
= MET removed (AUC = 0.81)

jetl-3 and bl,2 removed (AUC = 0.78)

—— Lepton only (AUC = 0.70)
- = Random Guess

(not relevant according to SHAP)

All features except lepton input features.

Occlusion AUC Value
Default Value (No Occlusion) 0.83
All jet1-3 features 0.81
The E7'S feature 0.81
O pmiss feature 0.82
All ¢ features 0.83
All jet1-3, bl and b2 features 0.78
All nodes except lepton 0.70

0.2

0.4 0.6 08
Background Efficiency

Preliminary conclusion: the GNN need less
variables to understand the signal - hidden
kinematic correlations easily exploited
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Moving to GNN Attention Transformers

> To better understand how to network learn and implement eXplainability directly, tested

a couple of implementation of Attention Transformers.

Transhemer Escoder

Transformers at a glance D
O
#Tokans
Embedding|
X e R/
O §
20 + Transformer model

kel

e

Positional embeddings

S

T-GAT Model and Hyperparameters

» Tokenized inputs

» Graph Transformer with 2 GAT layers: 1 with 3 heads
 Features projected onto Query, Keys and Values.

» Adam optimizer with a cosine annealing LR 1e-3

» BCE with Logits loss, batch size of 512

« Signal events: 450k (same as BDT)

» Background1 events: 240/590k (BDT trained on 6m)
» Background2 events: 240k (BDT trained on 796Kk)

AUC Trans: 0.9431, BDT 0.9269

True positive rate

1.04 r|r

0.24

0.0

0.0 0.2 0.4 06 0.8 L0
Model output

Tramforrmes pury

= Teamformes effcency

0.0 0.2 04 0.6 0.8 10
Cut on model score

The two bkg are different in
kinematics, currently studying
dependency on samples size

0.0 0.2 0.4 0.6 0.8 10
False positive rate

» Transformer models performed
better than GNNs shown before

» AUC score and ROC curves at
the same level and slightly better
than BDT multi-classifier optimized
for the analysis
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XAl Pipeline and preliminary analysis

Produce a «global» interpretation of the model. Tested with 3 Head1 Head 2 Head 3 Head 4
and 4 Heads (shown here).

We first select these subsets of the dataset:

* The training set

* The test set

- Signal correctly classified

* Signal misclassified

» Background correctly classified

» Background misclassified

Then we print the attention matrix for each head (in
average) and the attention for each node.

Misclassified signal

Head 3

Correctly classified background

Head 1 Head 2 Head 3 Head 4

The idea is to use the attention scores to understand which
connections of neurons are significative for the predictions.

Analysis of preliminary results show that attention scores
reflect expected behaviour, i.e.:

- for correctly classified signal events, lepton pT and MET pay more
attention to b1 and b2 (correlation expected).

- configuration of attention weights for misclassified signals is well
overlapping with the configuration for correctly classified background




Conclusions and Prospects

% Al techniques based on graphs are highly effective for classification application in High Energy Physics

% Overall, some insights from eXplainability layers obtained using the two HEP benchmarks. Still, decoupled xAl techniques have
limitations for easy-to-glimpse information for domain experts/scientists — explainable-by-design family of neural networks would be
more useful in future.

In this talk, we have presented current investigations using the DARK PHOTON and SUSY searches as benchmark

% DARK PHOTON:
e Reshaped and optimised DARK PHOTON ATLAS analysis training with GNN
e Explore XAl analysis options (Saliency Map and Tracln), as well as impact of global influencers - overall some expected features
obtained, although less clear than expected

* SUSY:
e Search XAl pipeline and data analysis in similar fashion to DARK PHOTON search: use of GNN show similar performance to
BDT

e Optimised model with features and architectures that are explainable-by-design like Attention based Graph Transformers

e Replace graph convolution and spectral based models with Transformers showing most performing, while keeping same
foundational selection on data and conditions in node/edge pruning — Attention scores show expected correlations for relevant
features

Plans: wrap up results and publish, apply approaches to other cases to evaluate xAl and ability to understand NN
20
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ATLAS

EXPERIMENT

Run: 350923
Event: 357202011
2018-05-23 01:23:14 CEST
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SUSY searches:
Event display for
a higgsino-like
event in the
low-mass
channel of the
multi-b search.
Four jets (yellow
cones) produced
in the decay of
the two Higgs
boson candidates

are observed,
with low missing
transverse
momentum.

https://atlas.web.cern.
ch/Atlas/GROUPS/PH

YSICS/CONFNOTES/
ATLAS-CONF-2023-0

48/fig_13.pn
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Real time HEP systems

Developed complete pipeline for a real-time Al based event selection. Explored an array of xAl (Attribution, Training
influence) methods based for easy-to-understand explanations of models’ predictions. Reported strengths and
drawbacks in this particular scenario. Developed a novel explainability techniques based on Convolutional Soft

Decision Trees
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e ultra-fast (<400ns/inference) DNN for identification of
muonic particles in the muon spectrometer of the ATLAS

detector at the LHC
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e test XAl techniques over extreme sparse data and heavily

compressed and quantised neural network models

> Flashtalk with Poster from yesterday

I Eur. Phys. J. C 81, 969 (2021), Comput Softw Big Sci 7, 8 (2023 I

Attribution Algorithms:
Regression Activation Maps VS Integrated Gradients

Integrated Gradients
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https://indico.nikhef.nl/event/4875/contributions/20314/attachments/8192/11823/EuCaif24_russo_slide.pdf

HEP detector

Development of a CNN autoencoder model for signal reconstruction. A time resolution better than 1 ns was achieved
which is consistent with the needed performance of PADME Electromagnetic calorimeter

Signal simulation Simple CNN for counting Autoencoder — Modified autoencoder
0 [\ 600
00 ‘/’}\JJ \%\K 400
|
J ‘
3 signals here! | M

G(enefratIon o r!IOIS? -:k?everal Classification task to identify the Convolutional autoencoder for Desired output contains information
wavetorms simpar 1 e number of pulses in a waveform signal and noise description about the time and amplitude

expected real data from particle
detectors

Integrated gradients Vanilla saliency 1000 Steps Layers output

—— Data
—— Target
Prediction

—— Data
—— Target
Prediction

—— Data
—— Target
Prediction

All developed models were investigated with various explainability methods: integrated gradients, vanilla saliency, activations visualisation

The best performing model is successfully introduced to the PADME and currently used in the analysis of real experiment data

K. Dimitrova on behalf of the PADME collaboration et al., Using Artificial Intelligence in the Reconstruction of Signals from the PADME Electromagnetic Calorimeter, Instruments 6 (2022) 4, 46
Valentin Buchakchiev et al., Pattern recognition and signal parameters extraction using machine learning methods, J. Phys.: Conf. Ser. 2668 (2024) 012001 25




Search 2 — dark-photon

I Explain ab ility > Sig1Bkg0

(True Negative)

The ATLAS detector orthogonal view

ID » How does a signal look like? ; @ PoponenisforBkg 1| =0 RS
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Search 1 - DARK - for “dark” photons, not yet discovered new particles. From images to graphs:
Dataset building:

* Build a graph for each ‘jet of particles’, one node for every energy cluster in the calorimeter (energy and
position as node attributes), edges connected depending on spatial distance between nodes

» Model optimization and XAl implementation of TRAC-IN (data influence) and saliency maps.

I “Search for light long-lived neutral particles from Higgs boson decays via vector-boson-fusion production from pp collisions at \'s = 13 TeV with the ATLAS detector”, submitted to EPJC (Inspire) '6



https://inspirehep.net/literature/2728869

XAl Pipeline and model variants

Process RAW data information from ATLAS calorimeter: energy deposits relative position and energy distribution

before
Dataset building:
* Node for every cluster in the calorimeter

* Normalized cluster energy and position as node attributes*: // Graph pre-procassing
- Edge built if spatial covariant distance between two nodes | »

is within an optimized distance parameter

- Covariant distance normalized as edge weight s

| o
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3x Graph Conv Layers

Output score

Graph Pre-processing:

* Remove isolated and self-connected nodes

+ Retain largest subgraph only to remove calorimeter noise “* Input dataset
Model optimization and XAl implementation:

* Test multiple models

+ Performance evaluation and comparison with 3D-CNN
+ Add XAl layers (TRAC-IN already implemented)

Modeto *© No preprocessing > same as reference CNN from papaer dR
Modet-1 *  Optimised delta-R layers = we find DR = 0.6(within calo-layer), 0.3(intra calo-layer)

is best based on metrics (accuracy and purity)
Modei-2

* Optimised number of nodes/subgraphs = we find that remove isolated nodes
(1 or 2) and subgraphs not connected to the core graph makes most sense from a
physics perspective looking at proponents and opponents from Trac-In

+ Performance comparison between GNN model-0/1/2 and original CNN

« XAl Tracln and saliency maps available for each model to motivate the
evolution of the preprocessing and the increase in performance

Entries normalised to unit area
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