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3000.000180 m - 
3000.000180 m =
      0.000000 m 

F. Acernese et al 



What are Auxiliary channels?
  

5

3000.0001801194000660323 m - 
3000.0001801194000660312 m = 

 0.0000000000000000011 m 
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Sub-wavelength!



What are Auxiliary channels?

Virgo is a very complex instrument!

● Thermal control
● Ultra high vacuum
● Seismic attenuation
● Environmental monitoring
● Laser stability
● ~ 7 optical cavities kept at resonance
● Feedback control loops
● Input and output mode cleaners
● Frequency dependent light squeezing (dark magic)
● …
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Auxiliary channels

∼1

ᯈ 10^5

Auxiliary channels constantly 
control and monitor the 
instrument and its 
surroundings.
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Auxiliary channels
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Auxiliary channels constantly 
control and monitor the 
instrument and its 
surroundings.

…but how do we know

when something goes

wrong? 

💥



How are we monitoring this complex system?
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Tools currently in use, like the Data 

Monitoring System (DMS) or 

Omicron, are based on linear 

algorithms,

But …

● The instrument has many 
nonlinear behaviours

● They need constant manual 
retuning by experts of the 
instrument

Screenshot of the DMS



Can machine learning help? 

Non-linearity …

Large amounts of data …

Data with high dimensionality …



Can we build a DMS-like anomaly detection tool 
based on  AI?

We want an algorithm capable of detecting abnormal behaviour 
in real-time, in order to swiftly notify the instrument operators 
when & where something is wrong. 

It must be:

● Unsupervised
● Multi-channel
● Work on minimal assumptions
● Flexible 
● Computationally cheap

We landed on the TranAD architecture by S. Tuli

et al   (arxiv:2201.07284)
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https://arxiv.org/abs/2201.07284


Dataset and Methods
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Dataset: the SuperAttenuators

● Mirror suspension in Advanced Virgo
● Achieves in-band passive attenuation of 10 orders of 

magnitude!
● Offers a platform for the actuators and other 

instruments
● There are 10 of them in AdV
● Monitored by ~ 600 sensors
● This system is well understood (physically) 
● Has a known response to ground motion.

We considered only 4 SATs (BS, PR, NI, WI) that are 
located in the same building
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V. Boschi et al 



Dataset Challenges

● Data is very heterogeneous
● White noise dominates
● Large dynamic range
● High sample rate (500 Hz)
● Many different operation conditions

Anomalies come in many different shape 
and sizes we may not even be aware of!
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ML architecture : TranAD (S. Tuli et al)

● Transformer based encoder & 2 decoders architecture

● Network tries to reconstruct the signal

● Training in 2 phases : 
○ 1st phase: Both decoders try and minimize reconstruction loss 
○ 2nd phase: Naughty decoder maximizes reconstruction error, while 

also having access to the loss of the good decoder in phase 1 
(Focus score)
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Adversarial training allows the 

algorithm to focus on small 

deviations.

The architecture also allows for 

inference of anomalies at both 

short and long timescales



Basic inference workflow 
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Normalization:
High-pass filter + 

Downsampling to
 500 Hz Compression

Training on 
dataset labelled 
as anomaly-free 

by experts

Reconstruction

Reconstruction error used as anomaly score!

Anomaly 
threshold 
computed on 
training loss 
based on 
desired FAR 

S. Tuli et al



Results
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Results: Upper part of the 4 SATs
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● 4 hrs of training set, 3 days of inference set
● 36 channels @ 500 Hz 
● Total network has ~ 1.5e5 parameters
● 20 seconds of data -> 3 seconds of inference (on CPU!)

Training set



Results: Upper part of the 4 SATs : LVDTs
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Sea activity
[0.1 - 1 Hz]

h(t) glitches

LVDTs mostly 
monitor low 
frequencies



Results: Upper part of the 4 SATs : Accelerometers
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ACCs mostly 
monitor high 
frequencies

Human activity
[5 - 15 Hz]



Results: Lower part of the 4 SATs 
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● 4 hrs of training set, 3 
days of inference set

● 65 channels @ 10 kHz, 
downsampled to 500Hz
 

● Total network has ~ 
3.5e5 parameters

● 20 seconds of data -> 5 
seconds of inference (on 
CPU!)



But, can it run in real time?

Test run with non-ideal computing hardware (CPUs)

For inference on 100 seconds of data (65 channels @ 10 kHz)

● Data handling  : ~ 15.5 s (mainly download time)

● Inference time : ~ 17.5 s

         Total time        = ~ 33 s < 100 s 

22



Results: first use cases!
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● WI during an unlock: we expect to 

find anomalies. 

● And in fact we find them!

●  … but the vertical WI LVDT has the 

highest anomaly score. Too high …

● SuperAttenuator experts are now 

looking into this 

Suspicious...

Ok-ish



Conclusions

Algorithm shows promising results, it is capable of performing real-time anomaly 
detection with a decently low FAR.

 But there is still a long way to go.

● Can this setup actually deal with many more channels?
● How much speedup can we gain with better hardware? (GPUs)
● How can we deal with an ever-changing instrument? (Periodic retraining)
● Can we implement in the algorithm some previous knowledge of the system? 

(physical nature of the system)

A paper is on the way.
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Thanks for your attention!
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Backup: Veto channels?

There were a 

few examples of 

glitch + anomaly 

correspondence
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Backup: Bunch of anomalies
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Backup: Bunch of anomalies
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Backup: Inference run but longer
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