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What are Auxiliary channels?

Virgo is a very complex instrument!

Beams & optical benches

Thermal control for Advanced Virgo
Ultra high vacuum [ omsrmsambene
g} External benches

Seismic attenuation

Environmental monitoring

Laser stability

~ 7 optical cavities kept at resonance

Feedback control loops

Input and output mode cleaners

Frequency dependent light squeezing (dark magic)

Injection Benches

Detection Benches



What are Auxiliary channels?

Auxiliary channels constantly
control and monitor the
instrument and its
surroundings.
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What are Auxiliary channels?

Auxiliary channels constantly
control and monitor the
instrument and its
surroundings.
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...but how do we know
when something goes
wrong?




How are we monitoring this complex system?

Tools currently in use, like the Data — oo p— "
. o SLC_Ba_MC_Temp MC_Power PSTAB MC_FO_z BPC BPC Electr
Monltorlng System (DMS) or Detection PD PD_RF QPD_B1p QPD_B2 QPD_B4 QPDB5S | QPD_RFC omMc Shutter

. . Unlock‘ F | Bwp B4 | 87 B8 LSC_rms | ASC_rms DPHI | ViolinMoc
Omicron, are based on linear [

NE_ALS_Laser WE_ALS_Laser WE_ALS_ARM CEB_ALS_Laser
SIBL_IP SIB1_BENCH SIB1_BR SIB1_Vert SIBL_TE SIB1_Guard SIB1_Electr
. MC_IP MC_PAY MC_BR MC_Ti MC_Guard MC_Electr
a |g0 r |th mS, SDB1_IP SDB1_LC SDB1_BR SDB1 Vert SDB1_TE SDB1_Guard | SDB1_Electr
BS_IP BS_PAY BS_BR BS_Vert BS_TE BS_Guard BS Electr | BS TestMass

NI_PAY NI_BR NI_Vert NI_TE NI_Guard NI_Electr NI_TestMass

NE_PAY NE_TE | NE_Guard } NE_Electr ‘ NE_TestMass

B u t ‘ PR_TE PR_Guard ‘ PR_Electr ‘ PR_TestMass
e | SR TE SR Guard | SR Elect | SR TestMass

WI_F7 WI_PAY | WI_BR WI_Vert WI_TE Wi Guard | WiElcr [ W TestMass

WE_F7 \ WE_BR WE_Vert WE_TE WE_Guard WE_Electr WE_TestMass

CB_Hall MC_Hall TCS_zones | NE_Hall WE_Hall WindActivity | Seismon BRMSMon QNR TE_alarmed

Environment
INJ_Area DET_Area EE_Room \ DAQ_Room ‘ MeteoStations DeadChannel FlatChannel_ENV Lights SeaActivity

Th . t t h - ACS_CB_Hall |ACS_TCS_CHILI CSiDAQiRoo ACS_EE_Room| ACS_MC ACS_INJ ACS_DET ACS_NE ACS_WAB ACS_FCIM
Infrastructures T
L] e instrumen asn Iany UPS_TB | UPS_CB | UPSMC | UPSNE | UPS_WE IPS | FlatChannel [ExistChannel| Sensors | ACS_WE |ACS_CB_CR| ACS_COB | ACS_FCEM| PyHVAC

. . EIB SIB2_SBE SIB2_LC SPRBLC | SDB2 SBE SDB2_LC SNEB SBE | SNEBLC | SWEB SBE | SWEBLC
non I Inear be h aviours SQB1_SBE SQBILLC SQB2_SBE sQB2_LC FCIM_SBE FCIM_LC FCEM_SBE | FCEM_LC
NI_CO2_Laser | WI_CO2_Laser | NI_AUX_Laser
[ ] T h ey n eed con Sta nt manua I QNR GALVO | EQBI_ACTUATORS QNR_SQZ PLLs sQz

LargeValves Clean_Air TubeStations |  TubePumps MiniTowers TurboLinks | sQz RemDryPMP | VAC_SERVOS Tiltmeter

retu n i ng by expe rts Of the Pressure ‘ CompressedAir TowerServers \ TowerPumps CryoTrap 02_Sensors Tank \ HLS Vacuum_LAB

. DetectorSEnvironmESRel 4G LT Minitowers IsC Squeezer Injection
I n St r u m e nt DetectorMonitoring NewtonNoise DataCollection Storage DataAccess Automation DetChar Calibration- LLDataProd

Latency ‘ Disk ‘ Timing Timing_rtpc Timing_dsp Fast_ DAC ADCs_TE Daq_Boxes_TE

Suspensions

DAQ-Computin
e ) Domains DMS_machines olservers ‘ CoilSwitchBoxes INF_devices ENV_devices VAC_devices ‘ TCS_devices

| Calib_Hrec CalNorth CalWest CalPR \ CalSR PCalNorth PCalWest HOFT HOFT_Bias Noiselnjection}

DetChar-Ex.Trigger Hrec RANGE_BNS GRB_Alert

Screenshot of the DMS



Non-linearity ...
Large amounts of data ...

Data with high dimensionality ...

Can machine learning help?



Can we build a DMS-like anomaly detection tool

based on AI?

We want an algorithm capable of detecting abnormal behaviour
in real-time, in order to swiftly notify the instrument operators
when & where something is wrong.

It must be:

Unsupervised

Multi-channel

Work on minimal assumptions
Flexible

Computationally cheap

We landed on the TranAD architecture by S. Tuli
etal (arxiv:2201.07284)
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TranAD: Deep Transformer Networks for Anomaly Detection in
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Abstract

Efficient anomaly detection and diagnosis in multivariate time-
series data i of great importance for modern industrial applications.
However, building a system that is able to quickly and accurately
pinpoint anomalous observations is a challenging problem. This is
due to the lack of anomaly labels, high data volatility and the de-
mands of ultra-low inference times in modern applications. Despite
the recent developments of deep learning approaches for anomaly
detection, only a few of them can address all of these challenges.
In this paper, we propose TranAD, a deep transformer network
based anomaly detection and diagnosis model which uses attention-
based sequence encoders to swiftly perform inference with the
knowledge of the broader temporal trends in the data. TranAD uses
focus score-based self- & to enable robust multi-modal

feature extraction and adversarial training to gain stability. Addi-
tionally, model-agnostic meta learning (MAML) allows us to train
the model using limited data. Extensive empirical studies on six pub-
licly available datasets demonstrate that TranAD can outperform
state-of-the-art baseline methods in detection and diagnosis perfor-
‘mance with data and time-efficient training. Specifically, TranAD
increases F1 scores by up to 17%, reducing training times by up fo
99% compared to the baselines.

1 Introduction

Modern IT operations generate enormous amounts of high dimen-
sional sensor data used for continuous monitoring and proper func-
tioning of large-scale datasets. Traditionally, data mining experts
have studied and highlighted data that do not follow usual trends
to report faults. Such reports have been crucial for system man-
agement models for reactive fault tolerance and robust database
design [47]. However, with the advent of big-data analytics and
deep learning, this problem has become of interest to data mining
researchers and to aid experts in handling increasing amounts of
data. One narticular nse case is in artificial intellivence for Indnstrv-
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variate Time Series Data
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increasing data volatility creates the requirement for significant
amounts of data for accurate inference. However, due to the rising
federated learning paradigm with geographically distant clusters,
synchronizing databases across devices is expensive, causing lim-
ited data availability for training [48, 57). Further, next-generation
applications need ultra-fast inference speeds for quick recovery and
optimal Quality of Service (Q0S) [6, 49, 50]. Time-series databases
are generated using several engineering artifacts (servers, robots,
etc) that interact with the environment, humans or other systems.
As a result, the data often displays both stochastic and temporal
trends [45]. It thus becomes crucial to distinguish outliers due to

stochasticity and only pinpoint observations that do not adhere fo
the observed temporal trends. Moreover, the lack of labeled data
and anomaly diversity makes the problem challenging as we cannot
use supervised learning models, which have shown to be effective
in other areas of data mining [12]. Finally, it is not only impor-
tant to detect anomalies but also the root causes, i., the specific

data sources leading to abnormal behavior [23]. This complicates
the problem further as we need to perform multi-class prediction
(whether there is an anomaly and from which source if s0) (60]
Existing solutions. The above discussed challenges have led
to the development of a myriad of unsupervised learning solu-
tions for automated anomaly detection. Rescarchers have devel-
based methods that aim to
encapsulate the temporal trends and predict the time-series data in
an unsupervised fashion, then use the deviation of the prediction
with the ground-truth data as anomaly scores. Based on various
extreme value analysis methods, such approaches classify times-
tamps with high anomaly scores as abnormal [4, 10, 14, 20, 28, 29,

45,60, 62). The way prior works generate a predicted time-series
from a given one varies from one work to another. Traditional ap-
proaches, like SAND [10], use clustering and statistical analysis to
detect anomalies. Contemporary methods like openGauss [30] and
LSTM-NDT [20] use a Long-Short-Term-Memory (LSTM) based

nanval natainrbe tn frvanact the data with o inank timasserise and
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Dataset and Methods



Dataset: the SuperAttenuators

e Mirror suspension in Advanced Virgo

e Achievesin-band passive attenuation of 10 orders of
magnitude!

e Offers a platform for the actuators and other

instruments

There are 10 of them in AdV

Monitored by ~ 600 sensors

This system is well understood (physically)

Has a known response to ground motion.

We considered only 4 SATs (BS, PR, NI, WI) that are
located in the same building

V. Boschi et al

wo9'g
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Dataset Challenges

Datais very heterogeneous
White noise dominates
Large dynamic range

High sample rate (500 Hz)

Anomalies come in many different shape
and sizes we may not even be aware of!

Many different operation conditions
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ML architecture : TranAD (S. Tuli et al)
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Legend
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Multi-Head
Attention

Add and Feed Add and Feed Siamoid 1 Reconstructed |Phase 1 O
Normallze Forward Normahze Forward 9 Output 1

Complete

Sequence

Phase 2
Reconstructed [------ Oz

Output 2
£ Phase 1 ()2

Masked Multi Add and
Head Attention Normalize

)

Input

Multi-Head Add and Feed Sigmoid
Attention Normalize Forward 9

Window

Window Encoder

e Transformer based encoder & 2 decoders architecture
e Networktries to reconstruct the signal

e Trainingin 2 phases:

o

O

1st phase: Both decoders try and minimize reconstruction loss

2nd phase: Naughty decoder maximizes reconstruction error, while
also having access to the loss of the good decoder in phase 1
(Focus score)

min  max ||Oy — W|s.
Decoder1 Decoder2

Decoder 2

Adversarial training allows the
algorithm to focus on small
deviations.

The architecture also allows for
inference of anomalies at both
short and long timescales
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Basic inference workflow
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Reconstruction error used as anomaly score!
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Results
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Results: Upper part of the 4 SATs
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4 hrs of training set, 3 days of inference set

36 channels @ 500 Hz

Total network has ~ 1.5e5 parameters

20 seconds of data -> 3 seconds of inference (on CPU!) 18




Results: Upper part of the 4 SATs : LVDTs

Summary anomalies from 2020-02-01 00:00:00 to 2020-02-04 00:00:00

<
&

\{VIFEOE\II'[\Jl?THg‘gggHZ e e
3] | SR f : 1} LEN-}

ERBLISE §

Hz

—500Hz

Hz

Hz
Hz

B?*ﬁg:g%_l: CREIE Mq:‘n ! 1 FE AR ul

.i
ACC—V1~500Hz
z

=

LVDTs mostly :
monitor low

frequencies

' g:'X’Z’Z’
2
BREE
1
)
g
R

===
343
pp
islelalslele s
E
ol
285

Spgeee
o]
ZmNN
588
¥
ol
S5
1

N

d-d
o
=]
2
|
8

o
0
3
J
o
3

st

=<

=
T

T
>
3t
o

il
=1

U
T
=
L
a

LA
T3
1>
8
z
g

R H
_FOLVDTH2500Hz

g

A
_NI_FO_ACC_V1~500Hz
Z

cccesSES S
L
22
5‘3
==2
;3
g

Sssss
g
S
3t
o
&

P
ol
°
&
0 <
=
3
1=}

il

I i 4
ol hhlﬂ I 3 t I M L RRI IR R | 3] 1

oV
0_LVDT_H2-5001
0 LVDT_H1-500)

=0_ACC-V2500Hz

&)

UJ% ; 4 gﬁg

<<
[se

G
=1
TR R R R

S
I
N

s==<<
e

o

h(t) glitches

Hz]
=]
=)

v

8,35 8

Omicron triggers

Sea activity
[0.1-1HZz]

n

Seis rms for
lzCEB__0.1_1Hz

110°

19



Results: Upper part of the 4 SAT's : Accelerometers

ACCs mostly
monitor high
frequencies

Human activity

[6-15 Hz]
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Results: Lower part of the 4 SATS. ....ccoveorcnn
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But, can it run in real time?

Test run with non-ideal computing hardware (CPUs)
For inference on 100 seconds of data (65 channels @ 10 kHz)

e Datahandling : ~ 15.5 s (mainly download time)
e |Inferencetime:~17.5s

Totaltime =~33s<100s

22



Results: first use cases!

® WIduring an unlock: we expect to
find anomalies.

® Andinfact we find them!
... but the vertical WI LVDT has the
highest anomaly score. Too high ...

e SuperAttenuator experts are now
looking into this
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Conclusions

Algorithm shows promising results, it is capable of performing real-time anomaly
detection with a decently low FAR.

But there is still along way to go.

Can this setup actually deal with many more channels?

How much speedup can we gain with better hardware? (GPUs)

How can we deal with an ever-changing instrument? (Periodic retraining)
Can we implement in the algorithm some previous knowledge of the system?
(physical nature of the system)

A paper is on the way.
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Thanks for your attention!
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Backup: Veto channels?

There were a

few examples of
glitch + anomaly
correspondence
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Backup: Bunch of anomalies

2020-02-03 16:58:35
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Backup: Bunch of anomalies

2020-02-01 10:15:00
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Backup: Inference run but longer

Summary anomalies from 2020-02-01 00:00:00 to 2020-02-06
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