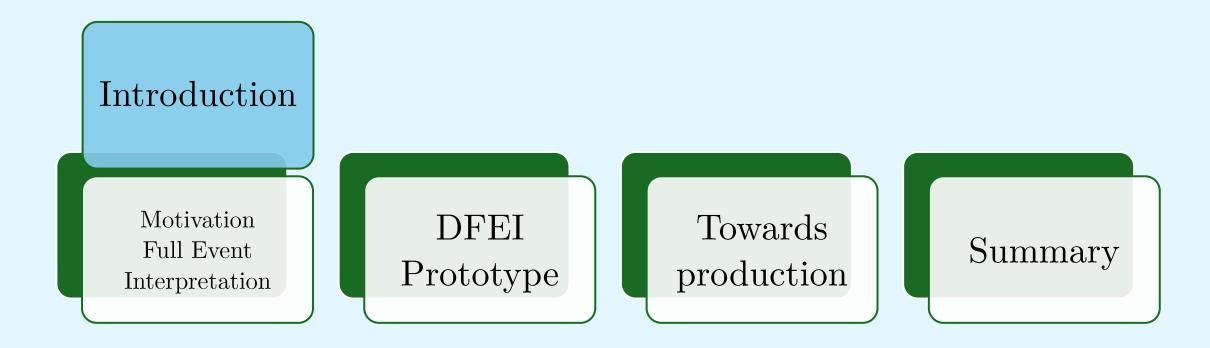
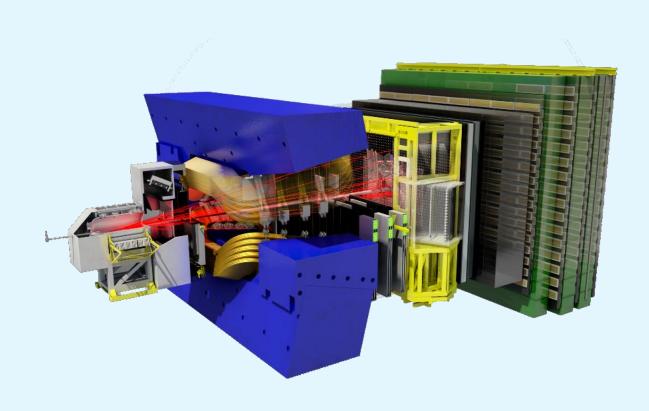


New developments and applications of a Deep-learning-based Full Event Interpretation (DFEI) in proton-proton collisions



Marta Calvi¹, Simone Capelli¹, Jonas Eschle², Julian Garcia Pardinas³, Abhijit Mathad³, Andrea Mauri⁴, Nicola Serra⁵, Rafael Silva Coutinho², Felipe Luan Souza De Almeida², William Sutcliffe⁵, Azusa Uzuki⁵

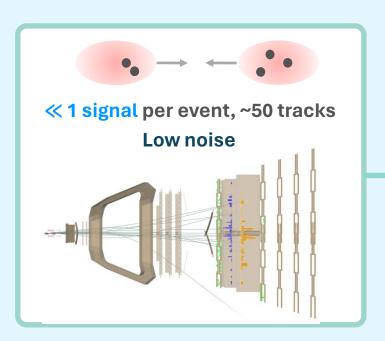
University of Milano-Bicocca & INFN¹, Syracuse University², CERN³, Imperial College⁴, University of Zurich⁵


Outline (I)

Motivation

- ➤ R&D project with two main applications:

 Trigger and offline analysis
- ➤ It could be used at LHCb, a single-arm forward spectrometer, designed to studying the <u>decays</u> of beauty and charm hadrons, rare decays and CPV measurements
- ➤ Very broad physics program, to be maintained and expanded in future LHC runs
- ➤ Increased particle multiplicities for LHCb Upgrades I and II bring big challenges

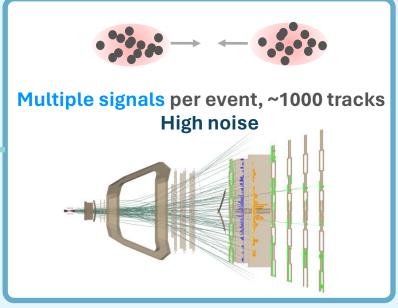


Paradigm shift

Which events are interesting?

"Signal-centric" trigger

strategy



Which parts of the event are interesting?

New trigger paradigm & higher background level

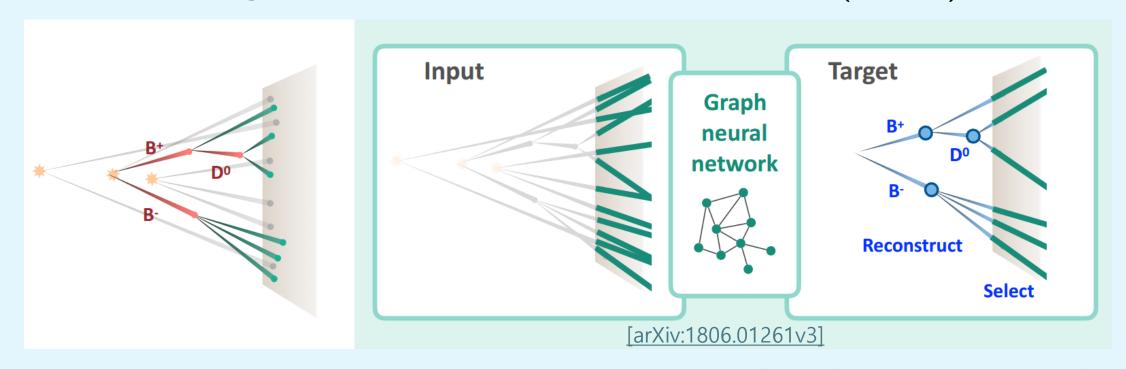
Signal-based vs Full Event Interpretation

Signal based

The current LHCb trigger is an **OR** between many decay-mode selection lines

Since Run2, to reduce the event size, some lines store only parts of the event that are related to the specific signal [JINST 14 (2019) 04, P04006]

E.g.: store the signal + the tracks in the same primary vertex (PV)



FEI

Reconstruct the b- and c- hadron decay chains in the event, in a hierarchical-clustering manner (cluster \rightarrow unstable particle) and discard the rest Advantages:

- Exploit extra correlations between objects in the event
- Bandwidth oriented: focus on storing as much "useful" information as possible
- Case of several signals per event as an integral part of the approach
- Establishment of a basis for an expanded functionality of the trigger: inclusive selections, study of anomalous events, ...

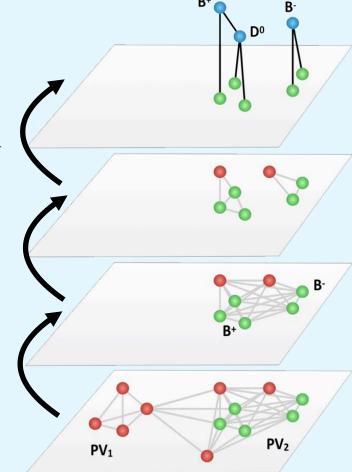
Deep-learning based Full Event Interpretation (DFEI)

- Input features: charged particles and their measured properties (nodes) and their relations (edges)
- Hierarchical, automatized and inclusive reconstruction of heavy-hadron decay chains
- 1) Trigger: Safely discard rest of event, with minimal loss for analyses → powerful event size reduction tool in a multi-signal environment
- 2) Analysis tool for background classification & suppression and for inclusive studies

[Comput.Softw.Big Sci. 7 (2023) 1, 12]

The Cooking Recipe

Blue: reconstructed ancestors


Green: particles from a b-hadron

Red: particles from the rest of the event

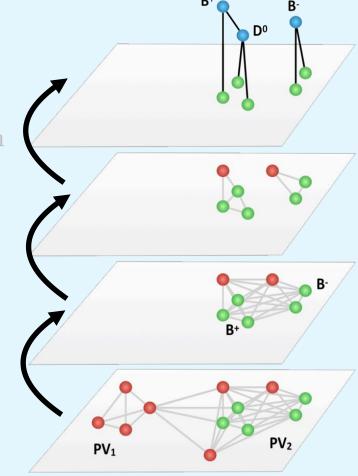
3. "Lowest common ancestor" inference

1. Node pruning

Goal: Remove most of the nodes not produced in a b-hadron decay

Signal nodes: particles from a b-hadron (any of them)

Background nodes: particles from the rest of the event


Cut @ 99% ~70% BKG rejection

Blue: reconstructed ancestors
Green: particles from a b-hadron
Red: particles from the rest of the event

3. "Lowest common ancestor" inference

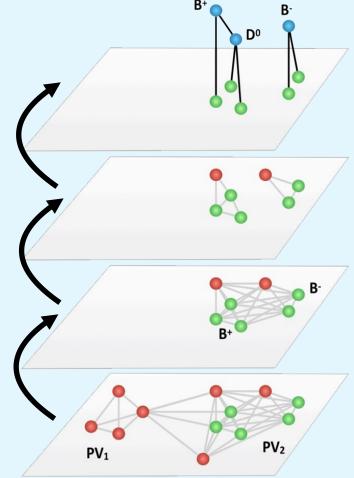
2. Edge pruning

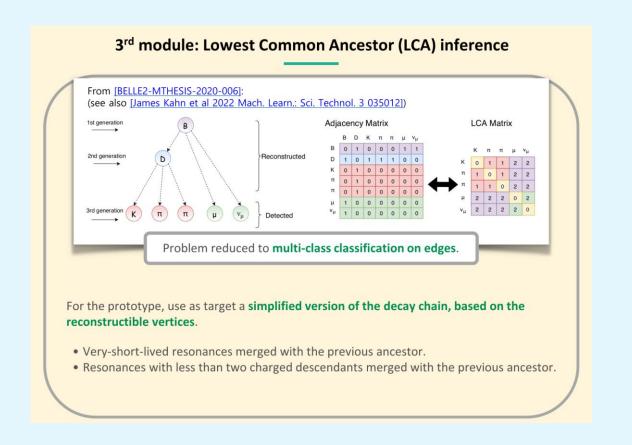
1. Node pruning

Goal: Remove connections between nodes not produced in the same b-hadron decay

Signal nodes: pairs of particles with the same b-hadron ancestor

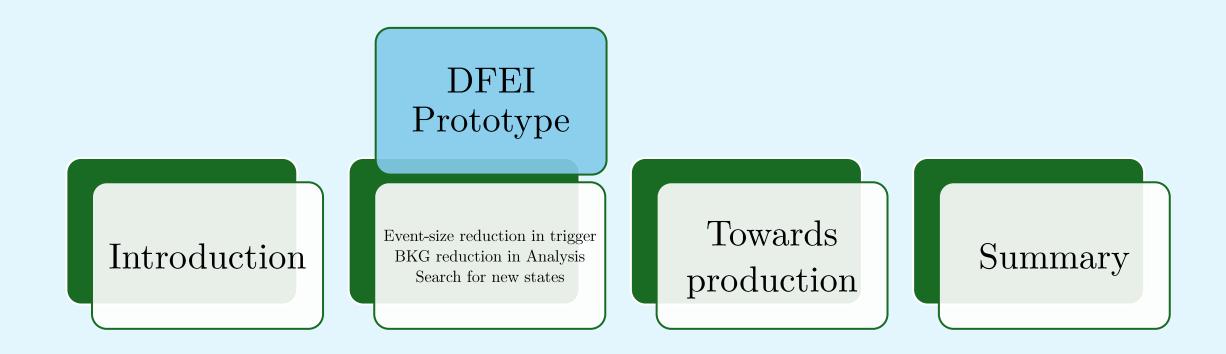
Background nodes: any other pair of particles


Cut @ 99% ~68% BKG rejection


Blue: reconstructed ancestors
Green: particles from a b-hadron
Red: particles from the rest of the event

3. "Lowest common ancestor" inference

1. Node pruning


3. "Lowest common ancestor" inference 2. Edge pruning 1. Node pruning PV_1

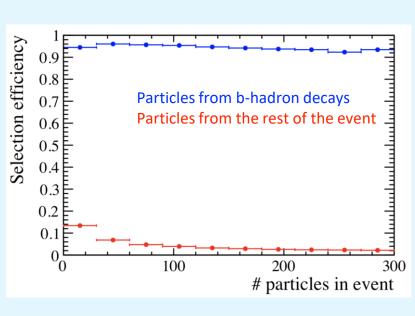
Blue: reconstructed ancestors

Green: particles from a b-hadron

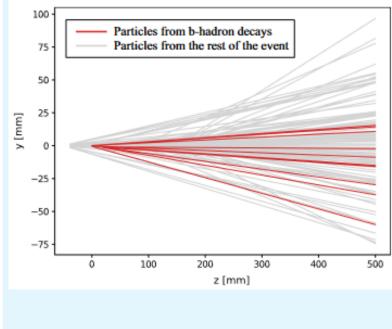
Red: particles from the rest of the event

Outline (II)

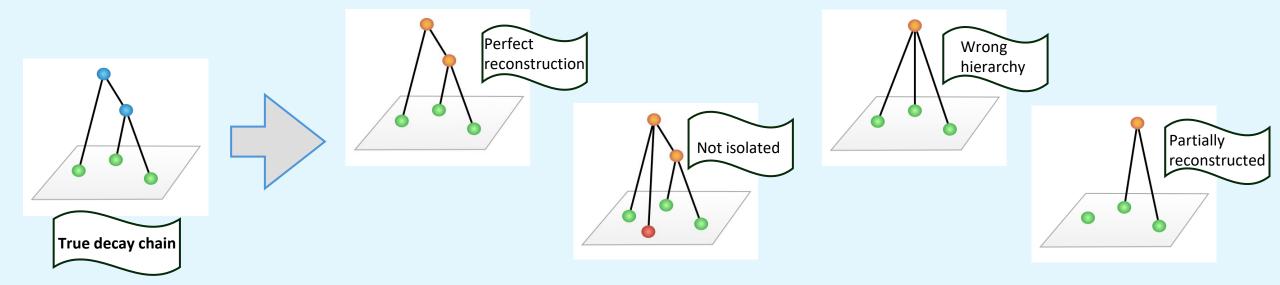
Trigger performance: event-size reduction


Algorithm based on Graph Neural Networks, for the moment restricted to b-hadrons and charged stable particles


> Trained on custom simplified simulation in Run3-like conditions, with ~ 140 particles per event [https://zenodo.org/records/7799170]


Background rejection 96%

Signal efficiency: 94%


Average selected particles: ~10

Data filtering: decay-chain reconstruction

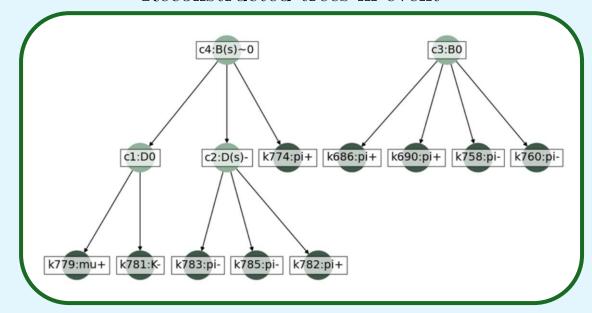
Decay mode	Perfect (%)	Wrong hierarchy (%)	Not iso. $(\%)$	Part. reco. (%)
Inclusive H_b decay	4.6 ± 0.1	5.9 ± 0.1	76.0 ± 0.2	13.4 ± 0.1
$B^0 \to K_0^* [K\pi] \mu^+ \mu^-$	35.8 ± 0.7	19.2 ± 0.6	44.9 ± 0.7	< 0.02
$B^0 \to K^+ \pi^-$	38.0 ± 0.7		54.7 ± 0.7	7.2 ± 0.4
$B_s^0 \to D_s^- [K^- K^+ \pi^-] \pi^+$	32.8 ± 0.7	7.1 ± 0.4 22.4 ± 0.6	53.7 ± 0.8	6.4 ± 0.4
$B^0 \to D^- [K^+ \pi^- \pi^-] D^+ [K^- \pi^+ \pi^+]$	22.7 ± 0.6		54.9 ± 0.8	< 0.02
$B^+ o K^+ K^- \pi^+ \ \Lambda_b^0 o \Lambda_c^+ [pK^- \pi^+] \pi^-$	35.7 ± 0.7	10.2 ± 0.4	46.4 ± 0.7	7.7 ± 0.4
	21.7 ± 1.0	8.9 ± 0.7	36.8 ± 1.2	32.6 ± 1.1
$B_s^0 \to J/\psi[\mu^+\mu^-] \phi[K^+K^-]$	26.9 ± 0.6	20.5 ± 0.5	52.5 ± 0.6	<0.02

Standard vs DFEI-based analysis

Standard exclusive analysis

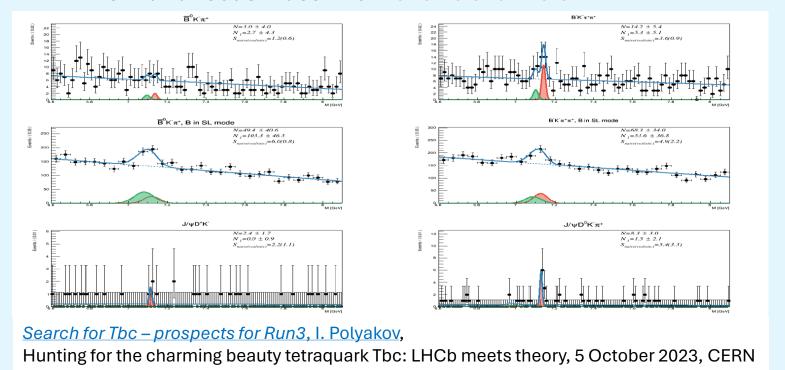
Search for specific candidate

Filter through data

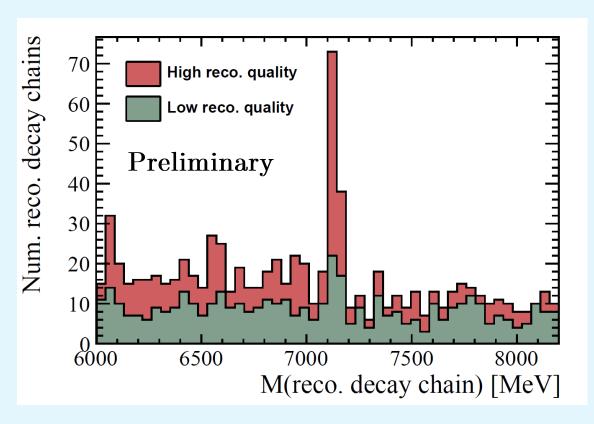

Possible contamination from poor or partial reconstructed decays

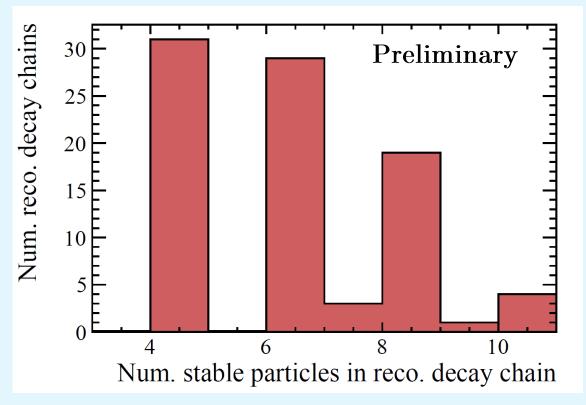
DFEI analysis

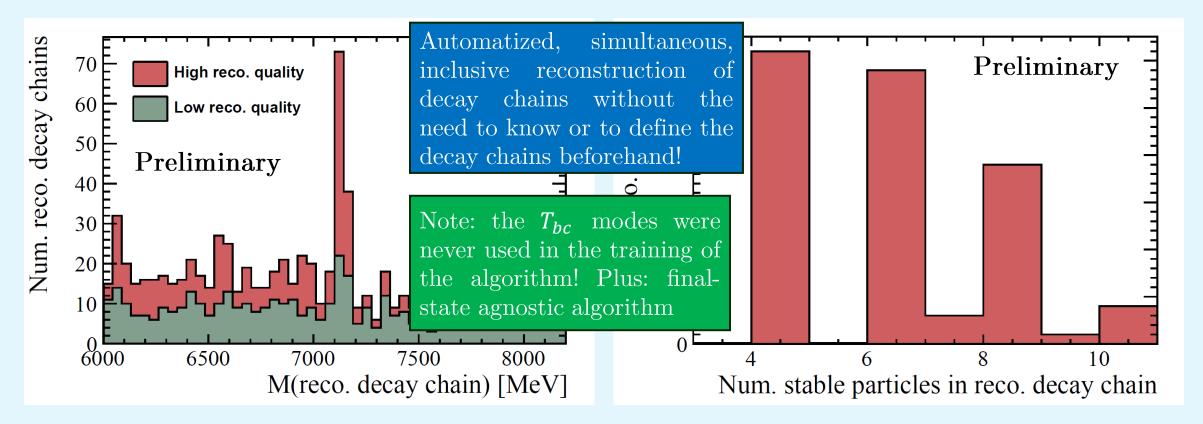
Look what is reconstructed in the events


Characterise decay chains, standard or exotic

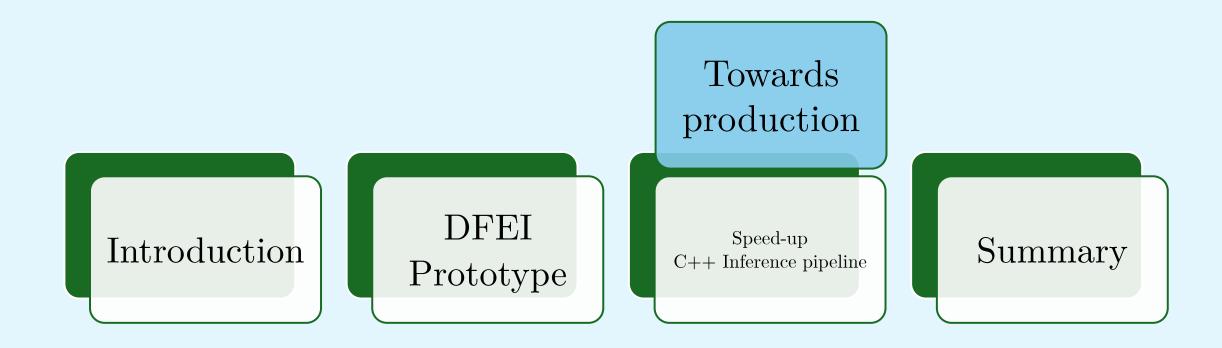
Reconstructed trees in event


- LHCb has found ~ 50 new exotic states: could benefit from more inclusive searches, and DFEI could do that
- Current ideas for searching for exotic states include **simultaneous** analysis of multiple exclusive decay chains


E.g.: the search for the tetraquark T_{bc} could involve the simultaneous mass fit of 20 to 40 channels!


decay channel	$\varepsilon_{tot} \times \mathcal{B} \ [10^{-9}]$	Expected yield			
fully reconstructed channels					
D^0D^0	7.8	3.1			
$D^0D^+\pi^-$	9.2	3.7			
$D^{0}D^{0}\pi^{+}\pi^{-}$	3.4	1.4			
$D^{+}D^{+}\pi^{-}\pi^{-}$	3.5	1.4			
sum		10			
$J/\psi D^+ K^-$	2.3	0.9			
$J/\psi D^0 K^- \pi^+$	3.1	1.2			
sum		2.1			
$\overline{B}{}^0K^-\pi^+$	32.9	13.2			
$B^{-}K^{-}\pi^{+}\pi^{+}$	33.6	13.4			
$\overline{B}{}^0K^-\pi^+\pi^+\pi^-$	6.7	2.7			
sum		29			
$\overline{B}{}^0{}_{SL}K^-\pi^+$	188	75			
$B^{-}_{SL}K^{-}\pi^{+}\pi^{+}$	94	38			
$\bar{B}^{0}{}_{SL}K^{-}\pi^{+}\pi^{+}\pi^{-}$	61	24			
sum		137			
$D^0D^+\mu^-\nu$	56	22			
$D^{0}D^{0}\pi^{+}\mu^{-}\nu$	43	17			
$D^{0}D^{+}\mu^{-} + X$	163	65			
$D^{0}D^{0}\mu^{-} + X$	108	43			
sum		147			
$\overline{B}{}^0K^-\mu^+\nu$	24	9.5			
$B^{-}K^{-}\pi^{+}\mu^{+}\nu$	16	6.5			
sum		16			
$D^{0}K^{-}\pi^{+}$	68	27			
D^+K^-	134	54			
$D^0\pi^+\pi^-$	2.5	1			
$D^+\pi^-$	4.9	2			
sum		84			
)T)T		4.5			

- > DFEI can simultaneously reconstruct the different decay chains, allowing for a more inclusive search for exotic states
- \triangleright Simplified Pythia-based simulation sample of several weakly decaying modes of T_{bc} analysed simultaneously using DFEI



- > DFEI can simultaneously reconstruct the different decay chains, allowing for a more inclusive search for exotic states
- \triangleright Simplified Pythia-based simulation sample of several weakly decaying modes of T_{bc} analysed simultaneously using DFEI

Outline (III)

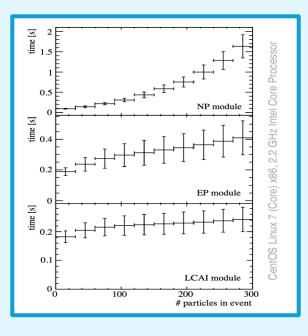
First speed-up round and C++ inference pipeline

First DFEI prototype: Evaluation pipeline on python with TensorFlow

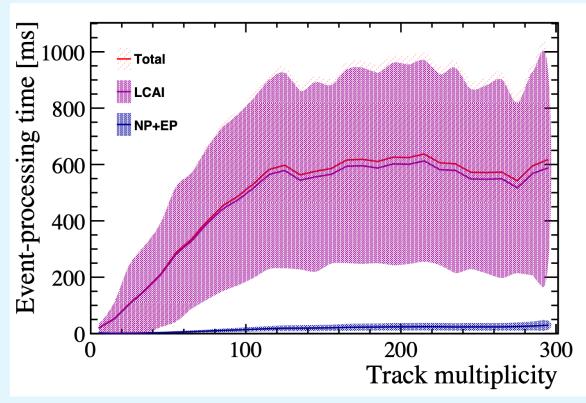
Quadratic scaling of the inference time with the track multiplicity Overall evaluation time on the order of few seconds per event on CPU (dominated by NP)

Substitute the GNN models of the NP and EP by BDT models to improve scaling

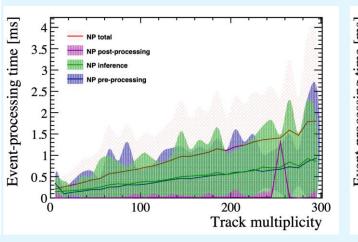
Evaluated independently for each node/edge

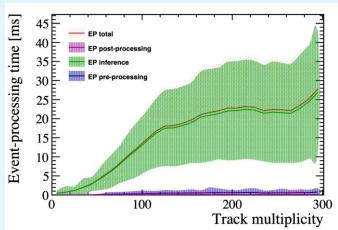

Cut at 99% signal efficiency for nodes/edges

C++ inference pipeline that takes as input

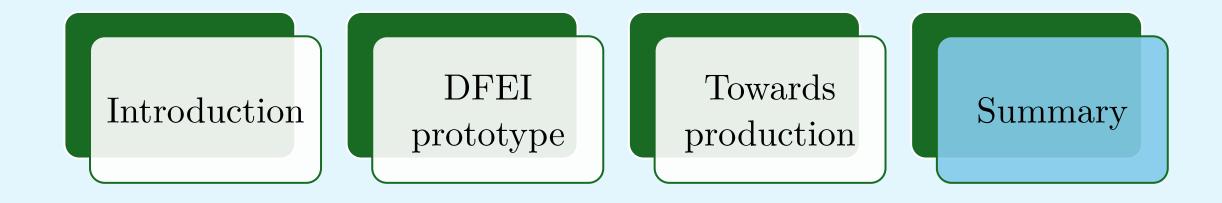

BDT-based NP, BDT-based EP, GNN-based LCAI

Using the <u>C API of CatBoost</u> and <u>TMVA::SOFIE</u> for the LCAI GNN inference




First speed-up round and C++ inference pipeline

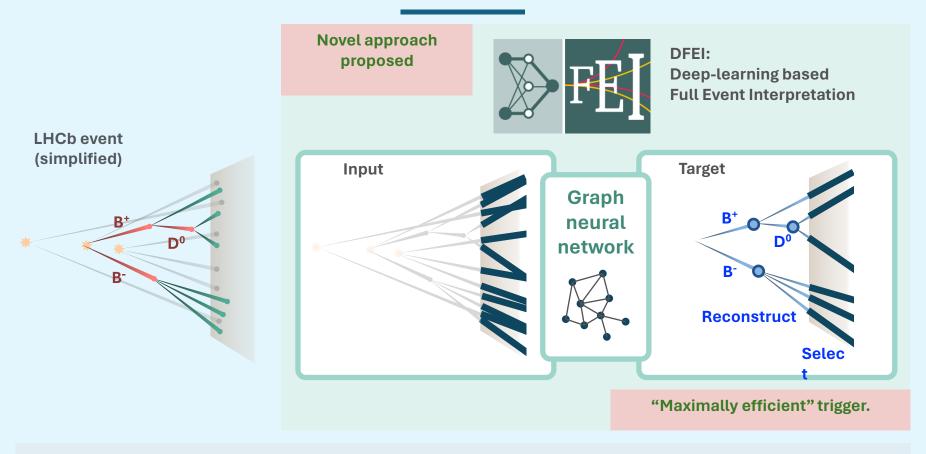
CentOS Linux 7 (Core) x86 2.8 GHz Intel Core Processor


- ✓ Excellent scaling achieved thanks to the fast prefiltering by the NP and EP
- ➤ Time now dominated by the LCAI algorithm
- ➤ Significant overall speed up

- > Next: physics performance studies for the new configuration, hyper-parameter tuning
- ➤ In parallel: study of GNN architecture developments to gain further speed-ups

Outline (IV)

Summary


- 1) Developed a **prototype**, published in paper [Comput.Softw.Big Sci. 7 (2023) 1, 12]
- 2) We are exploring **applications** in **three** different domains:
 - > Trigger, data filter and inclusive analysis with very promising results [https://zenodo.org/records/7799170]
- 3) On the way from prototype towards production
 - > Developed a C++ pipeline and improved the scaling and timing of the algorithm

• Stay tuned: further developments are on the way!

Thank you!

Backup

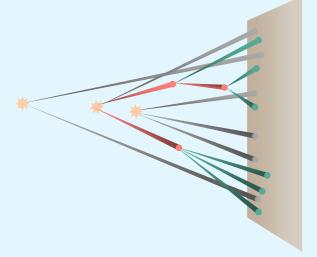
Facing the new era with machine learning

Similar developments in other experiments

Full Event Interpretation algorithm at an e+e- collider [Comput.Softw.Big Sci. 3 (2019) 1 6], BELLE2-MTHESIS-2020-006].

GNNs for trigger purposes [see e.g. Eur.Phys.J.C 81 (2021) 5, 381, Frontiers in Big Data 3 (2021) 44].

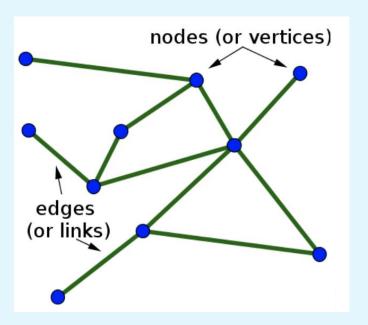
Simone Capelli - EuCAIFcon 2024 - New developments and improvements for DFEI


Decays and graph structures

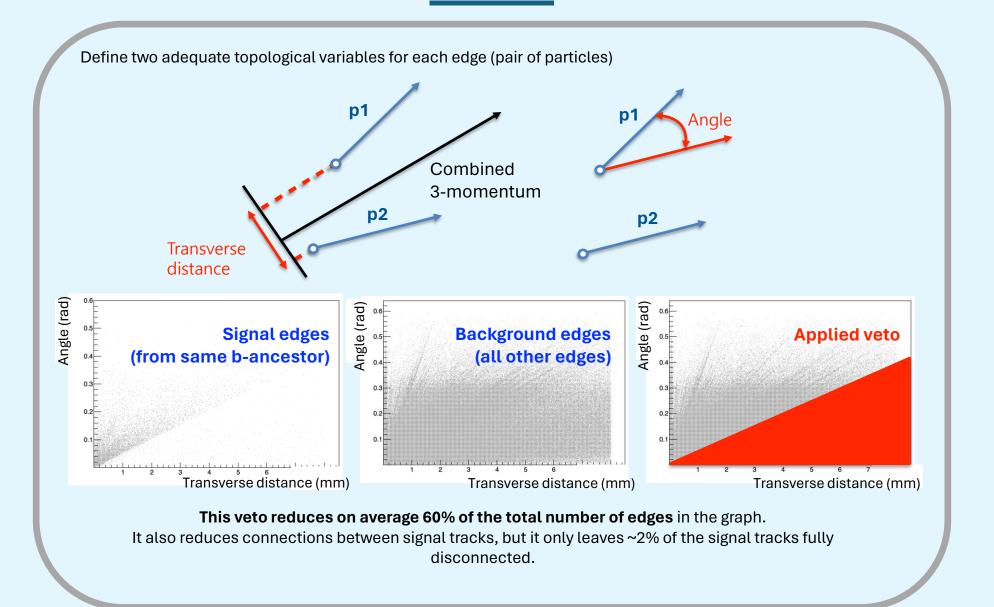
Event

Global: event information *nTracks, ...*

Nodes: track variables momentum, (PID), ...


Edges (# nodes²!): track *relations* angle, DOCA, ...

Graph structures


Representation of objects with relations

Arbitrary, sparse/dense relations

5/02/2024

Cut-based edge pruning

17

C++ inference pipeline

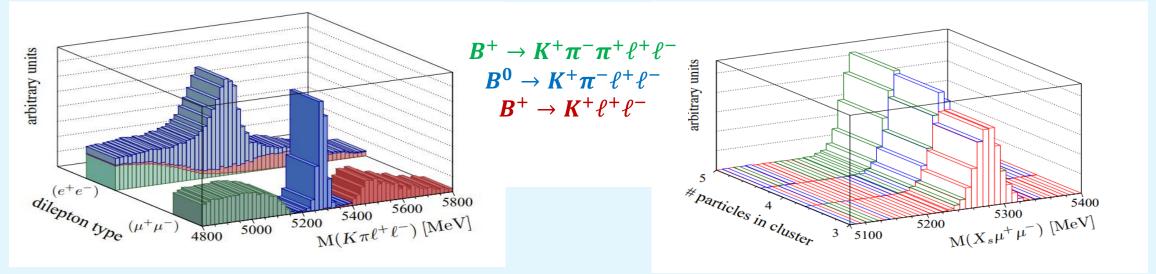
Information of the charged stable particles in an event.

NP algorithm:

- **1. Pre-processing:** read information on particle-level quantities in the event, compute derived quantities.
- **2. Inference:** evaluate the NP CatBoost BDT model, using the <u>CatBoost C API</u>.
- 3. Post-processing: apply the node filter.

EP algorithm:

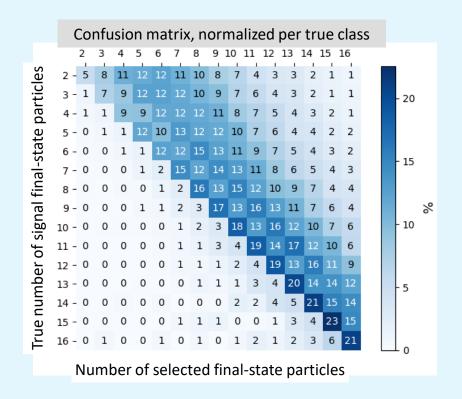
- 4. Pre-processing: compute particle-pair-level quantities.
- **5. Inference:** evaluate the EP CatBoost BDT model, using the CatBoost C API.
- **6. Post-processing:** apply the edge filter.

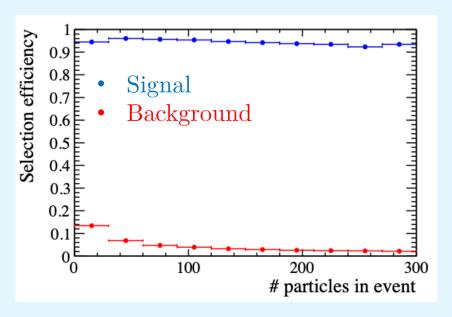

LCAI algorithm:

- **7. Pre-processing:** construct the input graph, combining particle-level, particle-pair-level and global information in the event.
- **8. Inference:** evaluate the LCAI GNN model, using <u>TMVA::SOFIE</u>.

Prediction of the hierarchical relations for all pairs of particles.

Example case: $B^0 \to K^+\pi^-\ell^+\ell^-$


- Partially- and over-reconstructed backgrounds are challenging to disentangle from the signal in exclusive, conventional analysis → loose of sensitivity
 - Particularly important for electron modes, impacting R_X measurements
- With DFEI, these contributions are fully reconstructed and classified in clusters of different numbers of particles



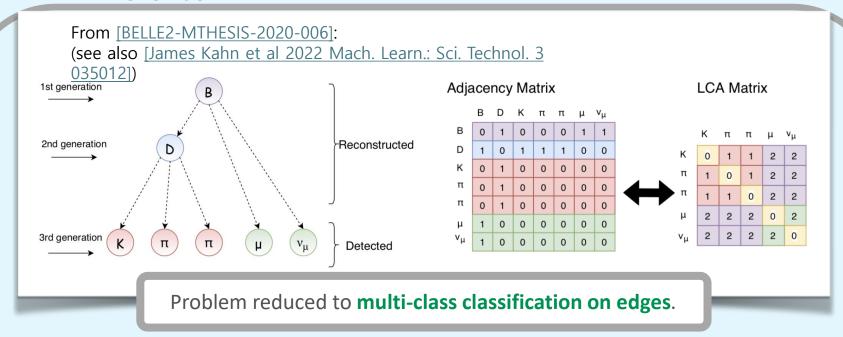
Conventional, exclusive analysis

With DFEI inclusive reconstruction

Performance: final-state particle filtering

Consistent performance with different number of signals

"single-b-hadron-signal" approach performance *comparable* to the envisaged nominal LHCb strategy for Run 3 [JINST 14 (2019) 04, P04006]


LHCb: 90% sig eff, 90% bkg rej. power

DFEI: 94% sig eff, 96% bkg rej. power

DFEI selects all of them simultaneously

DFEI capability #1Powerful event size (~ x14) reduction in a multi-signal environment.

3rd module: Lowest Common Ancestor (LCA) inference

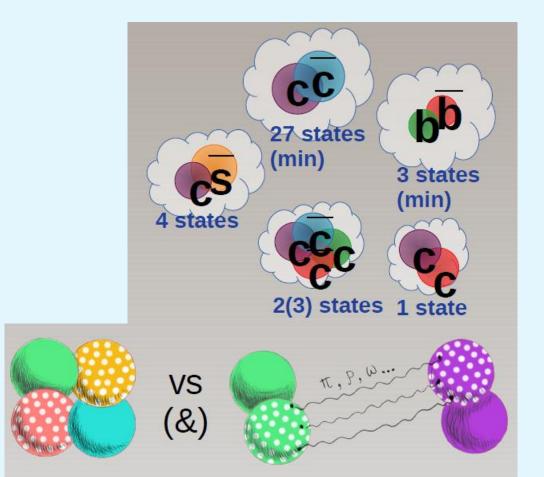
For the prototype, use as target a **simplified version of the decay chain, based on the reconstructible vertices**.

- Very-short-lived resonances merged with the previous ancestor.
- Resonances with less than two charged descendants merged with the previous ancestor.

Decay-level performance

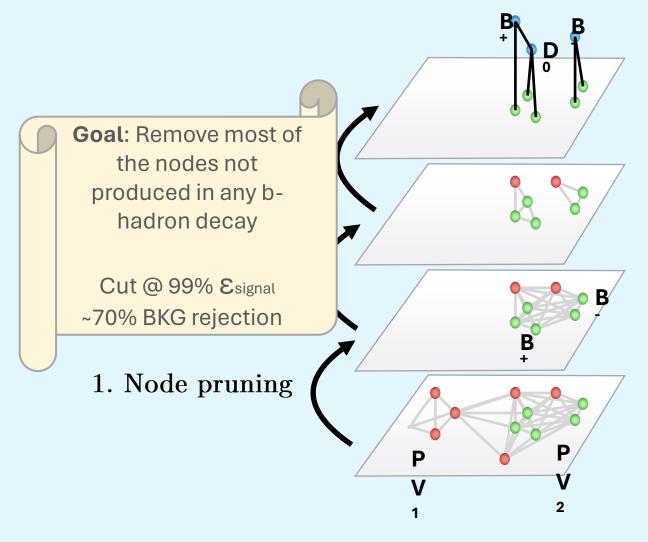
Decay mode	Perfect (%)	Wrong hierarchy (%)	Not iso. (%)	Part. reco. (%)
Inclusive H_b decay	4.6 ± 0.1	5.9 ± 0.1	76.0 ± 0.2	13.4 ± 0.1
$ \overline{B^{0} \to K_{0}^{*}[K\pi]\mu^{+}\mu^{-}} $ $ B^{0} \to K^{+}\pi^{-} $ $ B_{s}^{0} \to D_{s}^{-}[K^{-}K^{+}\pi^{-}]\pi^{+} $ $ B^{0} \to D^{-}[K^{+}\pi^{-}\pi^{-}]D^{+}[K^{-}\pi^{+}\pi^{+}] $ $ B^{+} \to K^{+}K^{-}\pi^{+} $ $ \Lambda_{b}^{0} \to \Lambda_{c}^{+}[pK^{-}\pi^{+}]\pi^{-} $ $ B_{s}^{0} \to J/\psi[\mu^{+}\mu^{-}]\phi[K^{+}K^{-}] $	35.8 ± 0.7 38.0 ± 0.7 32.8 ± 0.7 22.7 ± 0.6 35.7 ± 0.7 21.7 ± 1.0 26.9 ± 0.6	19.2 ± 0.6 $ 7.1 \pm 0.4$ 22.4 ± 0.6 10.2 ± 0.4 8.9 ± 0.7 20.5 ± 0.5	44.9 ± 0.7 54.7 ± 0.7 53.7 ± 0.8 54.9 ± 0.8 46.4 ± 0.7 36.8 ± 1.2 52.5 ± 0.6	<0.02 7.2 ± 0.4 6.4 ± 0.4 <0.02 7.7 ± 0.4 32.6 ± 1.1 <0.02

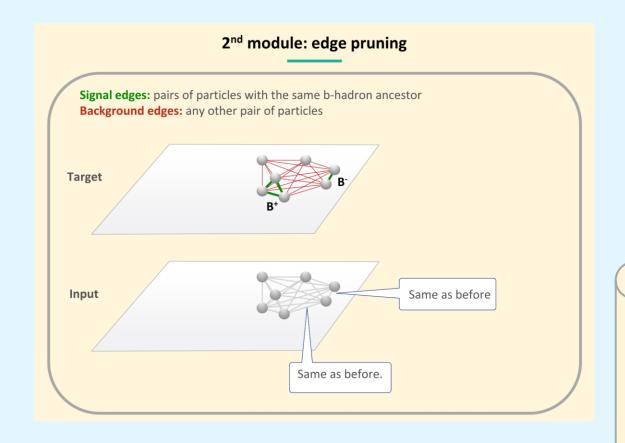
<u>Different types of decay reconstruction</u>


- wrong hierarchy: correct tracks but wrong hierarchy
- Not isolated: additional tracks that do not belong to the decay
- missing tracks of the true decay

Fraction of perfect signal reconstruction approximates the tag side efficiency for FEI at Belle (II) (order a few percent for semileptonic decays and a few per mille for hadronic decays.)

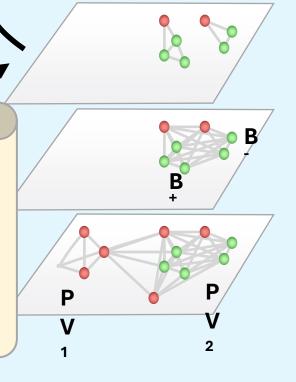
- Several states observed (50 since 2003)
- But: we still don't understand their nature
 - Bound or molecular states?
- Need unambiguous experimental evidence
- Other doubly-heavy states $[QQ\overline{ud}]$:
 - T_{bb} [bb][\overline{ud}] $\rightarrow \sim 10^{-3}$ events in Run3&4
 - T_{bc} [bc][\overline{ud}] \rightarrow may be below $\overline{B}D$ threshold, but opposite expectations in some molecular models Karliner, Rosner, 2017, Semay, SIlvestre-Brac, 1994, Carames, Vijande, Valcarce, 2019, Meng et al., 2021 Li, Sun, Liu, Zhu, 2012, Liu et al., 2019, Hudspith et al., 2020

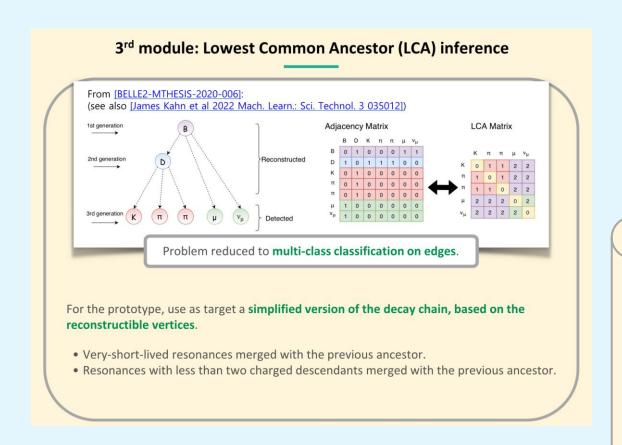

Search for Tbc - prospects for Run3, I. Polyakov,


Hunting for the charming beauty tetraquark Tbc: LHCb meets theory, 5 October 2023, CERN

1st module: node pruning **Signal nodes:** particles from a b-hadron (any of them) Background nodes: particles from the rest of the event pT: transverse momentum **Target** ETA: pseudorapidity PV: associated primary vertex IP: impact parameter with respect to the PV q: charge Input pT, ETA, IP, q. Opening angle, distance (between origins) along the beam axis, "transverse distance" (see backup), from same PV (boolean).

Blue: reconstructed ancestors
Green: particles from a b-hadron
Red: particles from the rest of the event


Blue: reconstructed ancestors
Green: particles from a b-hadron
Red: particles from the rest of the event

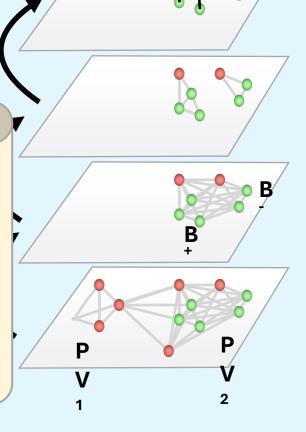

3. "Lowest common ancestor" inference

2. Edge pruning

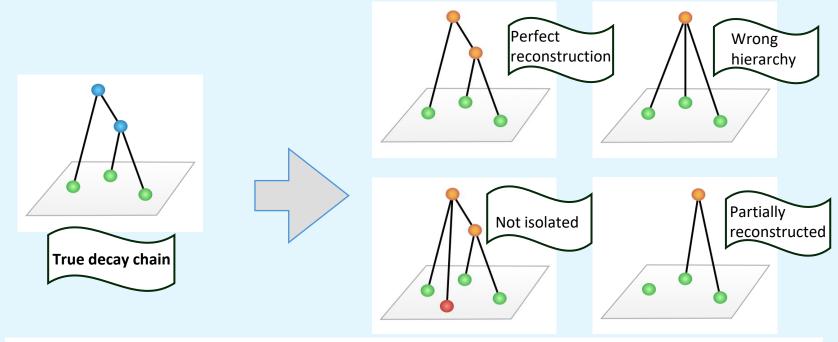
Goal: Remove connections between particles that don't share the same ancestor

Cut @ 99% Esignal ~68% BKG rejection

Blue: reconstructed ancestors


Green: particles from a b-hadron

Red: particles from the rest of the event


3. "Lowest common ancestor" inference

Goal: Multi-class classification of the edges based on the level of the shared ancestor:

- 0) Different decay chain
- 1) B children
- 2) B grand-children

Physics performance: decay-chain reconstruction

Decay mode	Perfect (%)	Wrong hierarchy (%)	Not iso. $(\%)$	Part. reco. (%)
Inclusive H_b decay	4.6 ± 0.1	5.9 ± 0.1	76.0 ± 0.2	13.4 ± 0.1
$B^{0} \to K_{0}^{*}[K\pi]\mu^{+}\mu^{-}$ $B^{0} \to K^{+}\pi^{-}$ $B_{s}^{0} \to D_{s}^{-}[K^{-}K^{+}\pi^{-}]\pi^{+}$ $B^{0} \to D^{-}[K^{+}\pi^{-}\pi^{-}]D^{+}[K^{-}\pi^{+}\pi^{+}]$ $B^{+} \to K^{+}K^{-}\pi^{+}$ $\Lambda_{b}^{0} \to \Lambda_{c}^{+}[pK^{-}\pi^{+}]\pi^{-}$ $B_{s}^{0} \to J/\psi[\mu^{+}\mu^{-}]\phi[K^{+}K^{-}]$	35.8 ± 0.7 38.0 ± 0.7 32.8 ± 0.7 22.7 ± 0.6 35.7 ± 0.7 21.7 ± 1.0 26.9 ± 0.6	19.2 ± 0.6 $ 7.1 \pm 0.4$ 22.4 ± 0.6 10.2 ± 0.4 8.9 ± 0.7 20.5 ± 0.5	44.9 ± 0.7 54.7 ± 0.7 53.7 ± 0.8 54.9 ± 0.8 46.4 ± 0.7 36.8 ± 1.2 52.5 ± 0.6	<0.02 7.2 ± 0.4 6.4 ± 0.4 <0.02 7.7 ± 0.4 32.6 ± 1.1 <0.02