

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Advancing Generative Modelling of Calorimeter Showers

Erik Buhmann, <u>Thorsten Buss</u>, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüge, Peter McKeown, Martina Mozzanica, Lorenzo Valente

April 30, 2024 European AI for Fundamental Physics Conference 2024

thorsten.buss@uni-hamburg.de

Detector Simulation

- Monte Carlo (MC) necessary to compare theory and measurements
- computational requirements expected to exceed available resources soon
- detector simulation most expensive part of simulation chain

1 CMS Offline Software and Computing. CMS Phase-2 Computing Model: Update Document. 2022. URL: https://cds.cern.ch/record/2815292

International Large Detector (ILD)

- proposed detector for the International Linear Collider ILC
- has two sampling calorimeters
- electromagnetic calorimeter (ECAL)
 - 30 layers, 5mm × 5mm cells
- hadronic calorimeter (HCAL)
 - 48 layers, 30mm × 30mm cells
- dataset:
 - photon showers in ECAL
 - uniform distribution of incident energies
 - between 10 and 90 GeV

² Erik Buhmann et al. Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed. 2021. arXiv: 2005.05334

³ILD Concept Group. International Large Detector: Interim Design Report. 2020. arXiv: 2003.01116

Thorsten Buss

Data Representation of Showers

Fixed Grid

- 3D array filled with energy values
- entries correspond to calorimeter cells
- allows for convolutional networks
- needs bounding box

Point Clouds

- variable-length, permutation-invariant sets
- only c.a. 4% of cells are non-zero
- more economically represented
- only generation of non-zero points

Thorsten Buss

Convolutional L2LFlows

- ▶ based on CaloFlow⁴ and L2LFlows⁵
- one energy distribution flow
 - learns distribution of layer energies
 - conditioned on incident energy
- 30 causal flows
 - learn shower shape in layer
 - conditioned on
 - incident energy
 - layer energy
 - previous layers
- generation
 - sample layer energies using energy distribution flow
 - sample shower shape using causal flows

⁴ Claudius Krause and David Shih. CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows. 2021. arXiv: 2106.05285 ⁵ Sascha Diefenbacher et al. L2LFlows: Generating High-Fidelity 3D Calorimeter Images. 2023. arXiv: 2302.11594

Advancing Generative Modelling of Calorimeter Showers

showe

Flow Architecture

energy distribution flow

 masked autoregressive flow⁶
 causal flows
 spline coupling flow⁷

 allows for efficient sampling
 convolutional U-Nets⁸ as sub networks
 better scaling properties
 architecture similar to Glow⁹

⁶Mathieu Germain et al. MADE: Masked Autoencoder for Distribution Estimation. 2015. arXiv: 1502.03509

⁷Conor Durkan et al. Neural Spline Flows. 2019. arXiv: 1906.04032

⁸Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.04597

⁹Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. 2018. arXiv: 1807.03039

Thorsten Buss

Point Cloud Representation Pre-Processing

points per shower

- point clouds of clustered Geant4 steps
- 36x higher resolution than detector cells
- 7x fewer points than full Geant4 steps

all Geant4 steps	40 000
clustered Geant4 steps	6 000
hits in calorimeter grid	1 500

Diffusion Models

- score-based model¹¹
 - continuous time diffusion process
 - stochastic differential equation (SDE)
 - sample by solving reverse SDE
- probability flow ODE
 - remove stochasticity
 - ► SDE \rightarrow ODE
- consistency model distillation¹²
 - allows for single step sampling

$$\mathcal{L} = \|s_{\theta}(x_t, t) - \nabla_x \log p_t(x_t)\|_2^2$$
$$dx = [f(x, t) - \frac{1}{2}g(x, t)^2 \nabla_x \log p_t(x)]dt$$

¹⁰ Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. 2020. arXiv: 2006.11239

¹¹Yang Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. 2021. arXiv: 2011.13456

¹²Yang Song et al. Consistency Models. 2023. arXiv: 2303.01469

Thorsten Buss

Calo Clouds II

- score-based model
 - continuous time diffusion process
 - probability flow ODE

- distillation into a consistency model (cm)
 - allows for single step sampling

¹³Erik Buhmann et al. CaloClouds: fast geometry-independent highly-granular calorimeter simulation. 2023. arXiv: 2305.04847

14 Erik Buhmann et al. CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation. 2023. arXiv: 2309.05704

Thorsten Buss

Results with Box Cut

- evaluation at same incident point
- evaluated with 30x30 cell box cut

Thorsten Buss

Advancing Generative Modelling of Calorimeter Showers

good agreement with data

Shifting the Showers

- shift the showers in the calorimeter
- still apply 30x30 box cut

need to train L2LFlows with nine times higher granularity

Thorsten Buss

No Box Cut

- shift the showers in the calorimeter
- no box cut applied

Thorsten Buss

Speedup over GEANT4

	Simulator	Batch size	time [ms]	speed up
	GEANT4	1	3915	×1.0
comparison of concration times	CaloClouds II		652	×6.0
comparison of generation times	CaloClouds (cm)		84	×46.6
hardware: Intel® Xeon® E5-2640	L2LFlows		1203	x3.3
#threads: 1	L2LFlows (x9)		4210	×0.9
on GPU speed up of	L2LFlows	100	371	×10.6
several thousands	L2LFlows (×9)		2775	×1.4

timing on single CPU thread

Summary

L2LFlows

- fixed grid representation
- convolutional networks
- very good agreement within box

CaloClouds II

- point cloud representation
- geometry independent
- no bounding box necessary

PointWise

Net

 $\mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$

N. diffusion

steps

fast sampling