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. Charged particle tracking — 1960s style

The 80 inch (2.0 m) bubble chamber

Discovery of the Omega-minus baryon in 1964
at BNL
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. Today: silicon trackers S

For example ATLAS ITk: new all-silicon tracker for the HL-LHC (data taking starting 2029)

27 thousand silicon modules
total area : ~180 m?
~5 billon (5*10°) readout channels

6 metres
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https://cds.cern.ch/record/2776651/

Jan Stark

Community white paper (2017)
* Algorithms, infrastructure, data access...

* Specific actions:
* HEP Software Foundation (HSF)
» Software Institute for Data-Intensive Sciences (SIDIS)

* Creation of the Journal “Computing and software for big
Science” (Springer)
* |RIS-HEP (NSF project, US)

* International project “Data Organization, Management and
Access” (DOMA)

 The 2020 update of the EU strategy for particle physics

D. Large-scale data-intensive software and computing infrastructures are an
essential ingredient to particle physics research programmes The community faces
major challenges in '(hIS 3 -LHC. As a result, the

policies on open datare serva : : paraged, and an
adequate level of resources invested in their lmplementatlon.

(link)
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arXiv.org > physics > arXiv:1712.06982

‘10 years to prepare ourselves” for HL-LHC (statement from 2017)
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Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large
investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires
commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be
recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals
and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to
prepare for this software upgrade.
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https://link.springer.com/article/10.1007/s41781-018-0018-8
https://indico.cern.ch/event/956746/contributions/4021256/attachments/2103419/3536886/CERN-ESU-015-2020_Update_European_Strategy.pdf

Machine learning for track pattern recognition ?

e

@ Featufed PredictiorrCom}é«'pr(\

TrackML Particle. Txac N o , 625,000 Challenge on Kaggle platform (in 2018): (link)
High Energy Physics particlé; trackmg |r‘rC { b EE l, Prize Money

Article in proceedings of CHEP 2018: (link)

QQ&\? CERN - 651teams - 4 years-ago

Can’t use the same tools

How to present tracking
data to a neural network ?

622 * 415 pixels

ATLAS tracker for HL-LHC:

: .. . 5 * 10° readout channels
a large fraction carries information _

~3 * 10° 3D space-points per event
about the person

=> data are sparse

Jan Stark
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https://www.kaggle.com/c/trackml-particle-identification
https://doi.org/10.1051/epjconf/201921406037

. . . F. Siklér, “Combination of various data analysis techniques for efficient
R e re S e n t I n t ra C k I n d a t a u S I n ra h S track reconstruction in very high multiplicity events”,
p g g g g p Connecting the Dots conference 2017 (link)
S. Farrell et al., “Novel deep learning methods for track reconstruction”,
proceedings of Connecting the Dots conference 2018 (link)

Charged particles leave hits in the Represent the data using a Goal:
detector graph classify the edges of the graph

High classification
score

=> high probability
that the edge is part of
a track

Low classification score
=> low probability that
the edge is part of a
track

One node of the graph = one hit in the detector

Connect two nodes using an edge
if “it seems possible” that the two hits
are two (consecutive) hits on a track
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https://indico.cern.ch/event/577003/contributions/2415235/attachments/1424172/2183976/sikler_denseTracking_ctdwit17.pdf
https://arxiv.org/abs/1810.06111

.Graph creation

A classic use case for graph neural networks:

Study molecules and their chemical bonds

QP!
NH,

“l suppose I'll be the one
to mention the elephant in the room.”

For particle tracking, e.g. using ATLAS ITk, we have O(300k) hits per event.

= A fully connected graph would have O(300k) nodes and O(101) edges. This is not going to fly.

Keep in mind that we want to run this at high throughput.
Efficient graph creation becomes an area of study on its own.

Jan Stark

andrewgenn, iStock
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.Graph creation

A classic use case for graph neural networks:

Study molecules and their chemical bonds

At

And we need to run this (event reconstruction)

NH,

on hundreds of billions of events expected to
be recorded at the HL-LHC

[For comparison: O(millions) of molecules in
modern databases]

For particle tracking, e.g. using ATLAS ITk, we have O(300k) hits per event.

= A fully connected graph would have O(300k) nodes and O(101) edges. This is not going to fly.

Keep in mind that we want to run this at high throughput.
Efficient graph creation becomes an area of study on its own.

Jan Stark
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° (o )) C. Biscarat et al., “Towards a realistic track reconstruction algorithm
Graph creation: “module ma procesdings of the veHEP2071 conference (k]
° proceedings of the vCHEP2021 conference (link)
Refined version using module triplets:

C. Rougier, PhD thesis, Université de Toulouse,
defended September 2023 (link)

New data-driven graph construction method:
* build graphs starting from a list of possible connections from a zone to another zone: the module map
* done using 90k simulated tt events at <u> = 200, considering particles with p; > 1 GeV and leaving at least 3 hits

Particles leaving hits Module map creation Graph creation

| [1]-[2]
2
2]-[E]

Done once ﬂ ”E For event reconstruction
o m [E-E —>
o\ -]
B BT E [ ]=[¢6]
1111[E= e
— Ce]-[=]
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https://doi.org/10.1051/epjconf/202125103047
https://box.in2p3.fr/index.php/s/YrQtzirdxggzgtL

X. Yu et al., “Performance of a geometric deep learning pipeline for

. G ra p h C reatio n : m et ri C I ea rn i n g HL-LHC particle tracking”, Eur. Phys. J. C 81 (2021) 876 (link)

First Step: metric learning

> For all hits, embed features (coordinates, cell direction, ...) with multi-layer perceptron (MLP) into N-dimensional space
> Associate hits on same track as close as N-dimensional distance

> Score each neighbour hit within embedding neighbourhood against the “source” hit at centre

> Create edges between the source hit at centre and the neighbouring hits above a given threshold on the score.

Embed into learned Connect all spacepoints All spacepoint connections
latent space within radius r joined into graph

A

A il A

Second step: filtering

Reduce the number of edges using an MLP that looks separately at each edge (the features of the two nodes).
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https://arxiv.org/abs/2103.06995

.GNN architectures

Input graph

r () Z
Nnodes[ : 5 : ]

S. Farrell et al., “Novel deep learning methods for track reconstruction”,
proceedings of Connecting the Dots conference 2018 (link)

Also used in Biscarat et al. (VCHEP2021, link)
and in ATLAS Collaboration, IDTR-2023-06 (link).

N,

Edge scores

—> — — Edge Node : : .
s B ASZ‘ {Encoders} e Blogck Block Heaa [Decoder} Nedges | ¢
/\ - g
Node Edge Interaction ‘ _
Encoder Encoder Network Transforms the D-dimensional space
of each edge into a classification
ﬂ ﬂ score for each edge
Embed the features into
a D-dimensional parameter space
An alternative GNN architecture (“Recurrent Attention Message Passing”)
is presented in N. Choma et al. (CTD 2020) (link)
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https://arxiv.org/abs/1810.06111
https://doi.org/10.1051/epjconf/202125103047
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-06/
https://arxiv.org/abs/2007.00149

. Full pipe-line; latest results for ATLAS ITk
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ATLAS Collaboration, IDTR-2023-06,
October 2023 (link)

H. Torres of behalf of the ATLAS Collaboration,
Proceeding of Connecting the Dots 2023 (link)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-06/
https://indico.cern.ch/event/1252748/papers/5576737/files/12931-ATL-SOFT-PROC-2023-047.pdf

. Inference speed

Currently available literature: in the vast majority of studies, no attempt is made to optimise execution speed
(demonstrate feasibility first).

Constraints imposed by the need to run the final algorithm at high throughput must be kept in mind,
cf. slides 6 and 7.

For the pipeline presented in this talk:
initial goal of 0.5 seconds per event (for ITk data at <u> = 200) on a low-end GPU is within reach.
[correspondingly faster/ more parallel on a high-end GPU]

Significant gains expected from future implementations with custom CUDA kernels.

(so far, have initial implementation of custom CUDA kernel for module map — will be presented
at the CHEP 2024 conference)

e
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Wish list

There is still ample room for improvement — and opportunities for newcomers to contribute.
My personal wish list includes:
- tuning of algorithms for ultimate physics performance

- more efficient, light-weight GNNs, specifically designed to deal with some of the peculiarities of our graphs,

including large variations of connectivity from one region of the graph to another l
= 7”“‘..H“,.H‘,,:‘.“H“HH““‘7/Inthisregion,itis
- computing performance gains for deployment on GPUs E M00;ATLAS Simulaion Preliminary v~ [clatvelydear
12005— n=1.0 _E to look for_
- simpler GNN models toack E
800 =
- dedicated CUDA kernels 600 E
400p =3_o€
200 w20
- computing performance gain for deployment on CPUs and GPUs P A s ST e
A’ 500 1000 1500 2000 2500 3000 3500
. . . . uminous region: z [mm]
- pruning of the models (“kill neurons that have little impact”) el the direction is less clear.

atr=0 In addition, this is where the density of hits is largest.

One can easily have >10 edges on a given node.
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. ) 8'" International CTD Workshop
PU— 5 p -~ Université Paul Sabatier, Toulouse, France
4 - 10-13 October 2023
P
- £ . '——-l A = ] — [

Orsay 2017

‘/\ Vienna 2016

Toulouse 2023 Connecting the Dots,
2023 edition: link

Virtual 2020

Seattle 2018

Princeton 2022
O Y

Berkeley 2015

Concise summary: link

The Connecting The Dots workshop series brings together experts on track reconstruction and other problems involving
pattern recognition in sparsely sampled data. While the main focus will be on High Energy Physics (HEP) detectors,

the Connecting The Dots workshop is intended to be inclusive across other scientific disciplines wherever similar problems
or solutions arise.

Advertisement

We are currently working on the organisation of a international workshop
on Heterogeneous Data and Large Representation Models in Science . .
in Toulouse in the early fall of 2024. & &

The workshop is sponsored by the CNRS AISSAl initiative.
Please do get in touch with me if you are interested. AI fOf sclence, sclence fOI' Al
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https://indico.cern.ch/event/1252748/
https://agenda.infn.it/event/35597/contributions/211612/attachments/111702/159423/Stark__Vertex2023__octobre2023.pdf

.Summary

Feasibility of GNN-based track reconstruction on realistic (fullsim, <u> = 200) samples has been demonstrated.
Physics performance is getting close to that of classical algorithms (combinatorial Kalman filter).

Promising inference speed on GPU has been shown.

There is still ample room for improvements on our way towards deployment in production

in a real experiment.

Would like to play around with GNN-based tracking yourself ?

(link)
Would like to contribute your own studies ? b
There is publicly available software that a < %:S_Q:Z; r‘ I I
can be helpful for getting started, including acorn.

e
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https://gitlab.cern.ch/gnn4itkteam/acorn
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. Electronic readout ! i, Uopceloctes O

Y
* r\‘t‘UL
THE USE_OF MULTIVWIRE PROPORTIONAL COUNTERS /
TO SELFCT AND LOCALIZE CHARGED PARTICLES
-
. . . Ge Charpak, R. Bouclier, T, Bressani, J, Favier
Multi-wire proportional chamber | and B, zupants3
CERN, Geneva, Switzerland.
L 4 ABSTRACT
Properties of chambers made of planes of independent wires placed
L between twe plane electrodes have been investigated, A direct voltage is
applied to the wires, It has been checked that each wire works as an
Q=—»0 (o) (o] O (o] o independent proportional counter down to separation of 0.1 cm between
wires, . .
d - Counting rates of 10°Avire are easily reached,

- Time resolutions of the order of 100 nsec have been obtained in some

gases,
/ / - It is possible to measure the position of the tracks between the
Cath Ode " wires using the time delay of the pulses.
/ \n Od e WI res - Energy resolution comparable to the one obtained with the best cylin-

drical chembers is observed.

- The chambers can be operated in strong magnetic fields.

Geneva - 23 February, 1968
e—
(Submitted to Nucl. Instrum, and Methods)

Nobel prize
in physics (1992)

Messrs, G. Amato and J.P. Papis were of great help in the research
into very low=cost amplifiers and were successful in this respect. They
showed that less than two dollars of equipment per wire was sufficient

DAADAAAAALALAALNDLLDAAD W

TV TrTTITTITT T T T T T TYT

to bring the pulses to a level close to 1 volt, where their utilization

L AAALN AL 0028 ANAINADAAANAMNDNL

by logic circuits is easy,
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Fifteen times more data

25 fb~1 150 fb~1 350 fb~1 3000 fb~!

Run 1 Run 2 Run 3 HL-LHC (Run 4, 5, ...)

High luminosity phase:

* more data

* 5 times more protons/bunch
* more complex events

40 million crossings of pairs of proton * highly granular detectors
bunches per second !

High luminosity: how ? Cannot reduce distance between bunches any further. More protons/bunch !

O O O O O© O O O o oo v vPTor v oo @ =
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Integrated luminosity

Work towards HL-LHC,
today :

beam injection chain
construction of new
detector components
design of computing
models




. Computing resources

ATLAS Software and Computing HL-LHC Roadmap,
CERN-LHCC-2022-00 (2022)
link

Run 3 (u=55) Rur] 4 (u=88-140) Run 5 (1=165-200)
'a' 1 I I 1 I I I I . I 'I I I 1 I I I 1 I I | I I I I I I I I I I I ]_I

5 S0~ ATLAS Prehmmary ]

& - 2022 Computing Model - CPU =

o - o -

= 40— o Gonservative R&D -

S ~ v Aggressive R&D 7

5 -~ — Sustained budget model -

e 30 — (+10% +20% capacity/year) —]

2 i ]

(@] - —

o B S

Resources used today: n:)_ 20 __ o
- O(1) million de CPU cores running continuously c_; - ]
- O(1) exabyte of storage 2 i _
g 10 b

O 1 I 1 1 1 I 1 | 1 I 1 1 1 I 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 I 1 | 1 | 1

2020 2022 2024 2026 2028

2030 2032 2034 2036

Year

HL-LHC

At HL-LHC: with our current computing model, we would face a significant shortage of computing resources

- need to make important changes

-> ... or live with cuts into our physics programme

Jan Stark European Al for Fundamental Physics Conference, Amsterdam | April/May 2024

SLOIT

\ 4


https://cds.cern.ch/record/2802918

. Classical algorithms for track reconstruction

|. propagate p«.; and its covariance Ci.; :

qx

qk|k-1 =fk|k—1(qk—1|k—1)
Crik-1= Fri-1Cr_1 k-1 F rI£|k—1 + O
with Qx ~ noise term (M.S.)

2. update prediction to get gk and Ci:
dik = Grfk-1 + Kilmy — hi(qrjc—1) ]
Ci = - K Hy) Crpie—y

with Kx ~ gain matrix :

K, = Cyy_1Hy (G + HiCp1H )™
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. ATLAS Detect:
. T r i r i n ( n T L n S [ Inner Tracker ] [ Calorimeters ] [ Muon System ] Systeﬁ;c or Event rate: 40 MHz
LOMuon ]
Barrel NSW Trigger
@ Sector Logic Processor
ATLAS (link) Endcap MDT Trigger
Sector Logic Processor aE>
%
| MUCTPI I— o
S
. . ﬁ =
Technical Design Report for the Phase-II g Global Trigger =
Upgrade of the ATLAS Trigger and Data ° Event | [ ©
o sge . o Processor °
Acquisition System - EF Tracking Amendment p )
k:
5 -
A o cTP
A The ATLAS Collaboration >
3 = |
5 ¢ after hardware-based
a © TTC .
% £ LO trigger: 1 MHz
2 o
g o | —
> Reference: vl2 g i Readout h
g Created: March 1, 2022 = FELIX Data
8 Last modified: March 1, 2022 Handlers
Lu.:) ~ Prepared by: The ATLAS Collaboration \ J g B
gg 2 detailed detector readout
8 @
B3 4 Dataflow N g after LO accept
ol :
©2022 CERN for the benefit of the ATLAS Collaboration. Event Storage Event ||
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license. Builder Handler Aggregator
\ 7, ]
-] E
Abstract Event Filt 2
This Technical Design Report Amendment describes revised plans for Event Fil- @
ter Tracking in the upgrade of the ATLAS Trigger and Data Acquisition system Processor 3
for the High Luminosity LHC. The motivation to change the baseline for Event Farm = after event filter
Filter Tracking is explained. Next, a description of the requirements for Event § .
Filter Tracking and the definition of the proposed baseline to meet these require- —u (tO ta P e) : 10 kHz
ments are presented. Several demonstrations using various hardware and soft- ATLAS
i i i izati Permanent ;
ware are reported in support of this proposal. Finally, the organization and s Offline
resources needed to deliver the new baseline are set out. torage Computing
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https://cds.cern.ch/record/2802799

. o [ Inner Tracker ] [ Calorimeters ][ Muon System ] ATLQ;&:‘:C‘” vent rate: 7
Bl Triggering (ATLAS) O S o
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§ Event __| é
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o —————
T
£ .
g CTP
= — 1
® after hardware-based
g TTC .
£ LO trigger: 1 MHz
e | _
g :fg:l i Readout h
" [ A ] [Ha?x?jtlaers]
b g : detailed detect dout
“w . . . 13 etalle etector reaaou
Recording data at the LHC is like p —L_ . : after L0 accept
drinking from a fire hose” °
[ Event ][ Storage ][ Event ] —
Builder Handler ||Aggregator
O / —
-1 €
Event Filter 2
~ @
Processor 2
[ Farm [ HT ] = after event filter
& (to tape): 10 kHz

Permanent ,gfllﬁf
B Computing
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https://cds.cern.ch/record/2285584

. The TrackML dataset

* Generation (Pythia8): 1000 tt events from pp collisions
e /s =14 TeV, u = 200 (HL-LHC conditions), pile-up modeling using A3 tune

* Simulation: Generic detector simulated with fast simulation of ACTS framework

18 728 silicon modules

= 1000 — "
~ -
| 16 17 18 ' hit
800 |— 5 o o
5 12 2 12
- 8
i P P S
600 |—
L § PS PS
100 L IR 13 14
} P ®
: 2 12
200 —
— 7 | | | | IJ || | | | | s 9
O 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l
-3000 -2000 —1000 1000 2000 3000
z [mm]
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Graph (neural) networks

Oct 2018 (link)

Relational inductive biases, deep learning, and graph networks

Peter W. Battaglia'* Jessica B. Hamrick!, Victor Bapst!,
Alvaro Sanchez-Gonzalez!, Vinicius Zambaldi', Mateusz Malinowski!,
Andrea Tacchetti!, David Raposo!, Adam Santoro!, Ryan Faulkner!,

Caglar Gulcehre!, Francis Song!, Andrew Ballard!, Justin Gilmer?,
George Dahl?, Ashish Vaswani?, Kelsey Allen?, Charles Nash?,
Victoria Langston', Chris Dyer!, Nicolas Heess!,
Daan Wierstra', Pushmeet Kohli!, Matt Botvinick!,

Oriol Vinyals', Yujia Li!, Razvan Pascanu'

DeepMind; 2Google Brain; 3MIT; 4University of Edinburgh

Edge block Node block Global block

(a) Full GN block

A GN block contains three “update” functions, ¢, and three “aggregation” functions, p,

e;c = ¢e (eka Vs Vskau) é; = pe—m (Ez,)
vi = ¢" (&, vi,u) & = p= (E)
u/ — ¢u (é/, ‘—,_/, u) ‘—,/ — p’U—)u (VI)

where E'Z = {(e;ca/rka Sk)}rkZi, k=1:N¢> V/ = {V;Z}izlzNW and E/ = Uz E’Z = {(e;c’rk’ sk)}kzlzNe'
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https://arxiv.org/abs/1806.01261

Graph (neural) networks

Oct 2018 (link)

Relational inductive biases, deep learning, and graph networks

Peter W. Battaglia'* Jessica B. Hamrick!, Victor Bapst!,
Alvaro Sanchez-Gonzalez!, Vinicius Zambaldi!, Mateusz Malinowski',
Andrea Tacchetti!, David Raposo!, Adam Santoro', Ryan Faulkner!,

Caglar Gulcehre!, Francis Song!, Andrew Ballard!, Justin Gilmer?,
George Dahl?, Ashish Vaswani?, Kelsey Allen?, Charles Nash?,
Victoria Langston', Chris Dyer!, Nicolas Heess!,

Daan Wierstra', Pushmeet Kohli!, Matt Botvinick!,

Oriol Vinyals', Yujia Li!, Razvan Pascanu'

DeepMind; 2Google Brain; 3MIT; 4University of Edinburgh

Interaction networks

Interaction Networks (Battaglia et al.l [2016; Watters et al., [2017) and the Neural Physics Engine
|Chang et al.| (2017) use a full GN but for the absence of the global to update the edge properties:

¢e (ekyvrkavsky ll) = fe (ek7v7'k7vsk) = NN, ([eka Vg Vsk])
¢U (éf/iavia u) : fv (é;7v’i7u) = NN, ([égavivu])

o (Bl) = - Y ¢

{k:rp=i}
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.Simplify GNN -> inference on FPGA

Computing and Software for Big Science (2021) 5:26 .
https:/doi.org/10.1007/541781-021-00073-z link

ORIGINAL ARTICLE
Work has also been done to accelerate the inference of

deep neural networks with heterogeneous resources beyond
GPUs, like field-programmable gate arrays (FPGAs)

Charged Particle Tracking via Edge-Classifying Interaction Networks [49_57]. This work extends to GNN architectures [20,
58]. Specifically, in Ref. [29], a compact version of the IN

Gage DeZoort' © - Savannah Thais - Javier Duarte? - Vesal Razavimaleki? - Markus Atkinson? - Isobel Ojalvo - was implemented for py > 2GeV segmented geometric

Mark Neubauer? - Peter Elmer’ graphs with up to 28 nodes and 37 edges, and shown to
have a latency less than 1 us, an initiation interval of 5 ns,

Received: 12 July 2021 / Accepted: 13 October 2021 / Published online: 15 November 2021 reproduce the floating-point precision model with a fixed-

© The Author(s) 2021 point precision of 16 bits or less, and fit on a Xilinx Kintex
UltraScale FPGA.

Abstract While this preliminary FPGA acceleration work is prom-

Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNN5s) are well suited ising, there are several limitations of the current FPGA

to address a variety of reconstruction problems in high-energy particle physics. In particular, particle tracking data are implementation of the IN:

naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges, given a set of

hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt 1. This fully pipelined design cannot easily scale to beyond

the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to O(100) nodes and O(1000) edges. However, if the initia-

those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta tion interval requirements are loosened, it can scale up

thresholds, we demonstrate the IN’s excellent edge-classification accuracy and tracking efficiency through a suite of meas- to O(10, 000) nodes and edges.

urements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN 2. The neural network itself is small, and while it is effec-

architecture is substantially smaller than prev1ously studied GNN tracking architectures; this is partlcularly promising as a
reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore the IN
may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate
each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.

tive for pr > 2 GeV graphs, it may not be sufficient for

lower-pr graphs.
ey Tha FP(I A Aacian malrac na aconmntinnce ahant tha nnc_
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