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CBM Experiment

* Compressed Baryonic Matter (CBM) is currently being constructed at FAIR accelerator facility in Darmstadt.
* Highest baryon densities will be created and the properties of super-dense nuclear matter will be explored.

* The experimental program of CBM is to measure a large number of observables at various beam energies and
different collision systems. Many of them are extremely rare, like multi-strange anti-hyperons, open and hidden charm.
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The CBM setup: target, dipole magnet, Micro Vertex Detector (MVD), Silicon Tracking System (STS), Ring Imaging Cherenkov (RICH),
Muon Chambers (MuCh), Transition Radiation Detector (TRD), Time-Of-Flight (TOF), Electromagnetic Calorimeter (ECAL), Projectile
Spectator Detector (PSD)

Such a multifunctional and versatile structure of the detector setup will make it possible
to study the most complex processes in the collision of heavy ions



Reconstruction Challenge in CBM
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(2) Detection

* Future fixed-target heavy-ion experiment at FAIR

* Explore the phase diagram at high net-baryon densities

107 Au+Au collisions/sec

~ 1000 charged particles/collision |

* Non-homogeneous magnetic field

Double-sided strip detectors |

* 4D reconstruction of time slices. |
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The full event reconstruction will be done
on-line at the First-Level Event Selection (FLES) and
off-line using the same FLES reconstruction package.

* Cellular Automaton (CA) Track Finder \| Event Selection
 Kalman Filter (KF) Track Fitter
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All reconstruction algorithms are vectorized and parallelized.




ANN4FLES: ANNSs for First Level Event Selection
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* Implemented networks in ANN4FLES include:

Multilayer Perceptron (MLP),
Convolutional Neural Network (CNN),
Recurrent Neural Networks (RNN),
Graph Neural Networks (GNN), and
Bayesian Neural Network (BNN).
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ANN4FLES

Artificial Neural Network package in C++
for First Level Event Selection in the CBM experiment at FAIR
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Topology 0
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Optimization Method ADAM
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ANN4FLES is a fast C++ package designed for use of Artificial Neural Networks (ANN) in the CBM experiment.
It provides a variety of network architectures with minimal additional programming required.
The package includes a Graphical User Interface (GUI) for network selection and hyperparameter adjustment.

» Extensive testing on datasets like MNIST, CIFAR, Cora, etc., has been performed and compared with PyTorch.
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Cherenkov Radiation

Sketch of the RICH setup as used in simulations
(outer gas box omitted)

e Cherenkov Effect :- Radiation emitted by a particle moving in a medium with a speed
greater than the speed of light in that medium.

e The photons are radiated at a fixed angle, determined by the properties of the medium
and the speed of the particle.

e These photons form a cone, which gives a ring on the photodetector plane (see figure
below).

Part of one typical event in the
smaller CO2-RICH: RICH hits
(blue), found RICH rings (red),
track projections form the STS
(green).

e The emission angle of the cone is determined by the
speed of a particle. Thus, having the same
momentum particles with different masses forms ring
with different radius.




Segmentation Models

e Unlike image classification task, assign a class
to each pixel of the image.

e A segmentation model returns much more
detailed information about the image.

forward/inference

backward/leamning &

e Image segmentation has many applications in
medical imaging, self-driving cars and satellite
imaging, just to name a few.

% 21
Fully Convolutional Network (FCN) architecture
(https://arxiv.org/pdf/1411.4038.pdf)




Segmentation Types

Segmentation

image semantic segmentation

e Semantic: Involves finding objects inside an image and
categorising them according to predetermined categories.

e Instance: Detect each object or instance of a class present in an
image and assigns it a different mask or bounding box with a unique

instance segmentation panoptic segmentation identifier.
Types of segmentations e Panoptic: Unified image segmentation approach. Each pixel in a
(https://arxiv.org/pdf/2001.04074v1.pdf) scene is assigned a semantic label (due to semantic segmentation)

and a unique instance identifier (due to instance segmentation).




U-Net Model

U-shaped semantic segmentation which has a contracting
path and an expansive path.

During the contraction, the feature information is increased
while spatial information is decreased.

On the other hand, every step of expansive path feature
map size by a factor of 2.

Then the reduced feature map is concatenated with the

corresponding cropped feature map from the contracting
path.
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U-Net architecture (https://arxiv.org/pdf/1505.04597.pdf)




RCNet (RingCenter-Net)

@ Reduced number of layers

@ Reduced number of parameters

‘ Faster feedforward

Modified version of U-Net @

—

@ rinal regression hea

1 ReLU

@ Non-negative threshold predictions

L

@ mproved prediction capabilities




RCNet (RingCenter-Net)
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Simulation for Training
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Simulation of rings for various numbers.
Examples (top) and labels (bottom)




RCNet Pipeline
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RCNet for Ring Finding in RICH High Density Regions

M C Irue Circles : 30

True Circles : 10 True Circles : 50

P — ot —. P
B » FE . . T ~ D ¥ h
- :L;,/‘ — ‘_ 'j‘f‘ iy t‘i t" Y :{& '}’?_‘\t L " g IL; ) M \ .
\‘\w{/{ BB Y e, { y

sy - AL e L b = &
iy } — E‘f"‘n ﬂ) LR ﬁ/‘") N . ?,r' 7“‘3: g
[Foner™ L e ¢t b f 7 { " ,
[~ A e ’ — MY [~ ” "

( ) e L ‘*-—“\ Q"’g .A,%[_,N . : " W
L . i .] — ¥ o % bl /" k] *Le
et 1 - S RET ¢ e

g L PR, ) i 3
r N T t - £
A I o AT e
L . L1 aleety { e l - - —
: Ty £ o o
L S T’/‘A 5-) ]( ‘)‘,- — ihq/ S -.\.__‘.‘3_" i&;{‘g"}’.‘ tad L :?%:) 1_% -
L {e) 'kg RPN - T we ; -
s . P - :
L A ;{m\ - et L e L
= - L
TR T 1 R I TN N N Y N R Ry [ S I T T T T T T T TR T |
RCNet Circles : 10 [Ref Extra Ghost Clone] RCNet Gircles : 25 [Ref Extra Ghost Clone] RCNet Gircles : 43 [Ref Extra Ghost Clone]

R
&

%@
Q0T

[ | S N O | | S S [ I I I S | S I Y S I N

1T T T T 1T T T T T T1

Reco

10 Rings 30 Rings 50 Rings 70 Rings

RCNet is capable to find rings in high density regions



Summary

« A C++ package of Artificial Neural Networks for the First Level Event Selection (ANN4FLES) was created for the CBM
experiment.

« All networks implemented in the package have been successfully tested on a number of standard datasets and show
comparable results to the PyTorch library.

« The ANN4FLES package is now being investigated for various reconstruction and analysis tasks in the CBM FLES
package.

» The implementation of RCNet (RingCenter-Net) shows reliable performance even in higher density regions of RICH.




