

Generative models for transient noise studies in Gravitational Waves detectors

Lorenzo Asprea^{1,2}, Francesco Sarandrea^{1,2}, Elia Cellini³, Federica Legger^{1,2}, Sara Vallero^{1,2}

¹On Behalf of the Virgo Collaboration, ²INFN Turin, ³University of Turin

EuCAIFCon - Amsterdam xx/xx/2024

Gravitational interferometers (GI) are important because they allow scientists to detect and study Gravitational Waves (GWs), which help us understand the Universe

Why

☆ What

How

GI sensitivity is limited by noise. We want to separate physical information from transient noise in GI data.

> Making use of **Generative Models** leveraging on deep NN's ability to understand non linear structure in data.

Gravitational Waves and Interferometers

- Gravitational interferometers are important because they allow scientists to detect and study Gravitational Waves (GWs).
- **GWs** are ripples in spacetime caused by the acceleration of massive objects, such as **black** holes or neutron stars.
- GWs were predicted by Albert Einstein's theory of General Relativity but were not directly observed until 2015 with the first detection by the LIGO – Virgo Collaboration.

(https://doi.org/10.1103/PhysRevLett.116.061102)

GWs are important for:

- Cosmology and the Early Universe
- Fundamental Physics
- Multi-Messenger Astronomy

Gravitational Interferometers: very complex machines!

- The Main Channel measures the interference pattern produced by laser light as it travels along the GI's arms
- When a **GW** passes by, it slightly **changes the length** of the **arms**, causing the **interference pattern to change**

- **Physics (**vacuum, thermal noise, quantum effects,..)
- Crazy sources (planes in the sky, you sneezing,..)

Outline and goal

- Non-Gaussian transient noise artifacts (aka **glitches**) are one of the most **challenging limitations** in the study of gravitational-wave interferometer
- We map glitches from control channels (uncorrelated with the physical signals) to the main channel, in order to subtract the generated noise from the physically interesting data
- We use deep generative models for the mapping in order to capture non-linear structure in the data

Gravitational Interferometers' data

- Single type of glitch: Scattered Light (unwanted light that is reflected or scattered off surfaces within the interferometer's optical components).
- **Physical motivation** in **channel selection** (Out or the 100K+ auxiliary channels, we select those whose units of measurement are position, velocity and acceleration)
- Consider only safe channels (i.e. channels that are not witness of any gravitational signal)
- Choose only correlated channels (i.e. control channels that show excess in energy at the same time as the main channel.
- Use **Qplots** (a particular type of spectrograms, that show the energy content of signals in both time and frequency domain)
- Correlation among channels can be non-linear (Synchronous excess in energy can occur at different frequencies)

Time series (top) and Qplots (bottom) for main channel and one channel monitoring movements of the optical benches

Dataset

Time series

- 1. 12K Scattered Light events in O3a VIRGO
- 2. ± 8s around glitch
- 3. Resampling to 500Hz
- 4. Whitening
- 5. Normalization to [0,1] range

Qplots

- 6. Qplot and cropping around highest peak frequency.
- Select spectrograms with SNR of at least 15
- 8. Normalization to [0,1] range

Neural Network architectures

- Code in Pytorch
- L1-Loss= Σ |Generated Output Target Output|

QPlots: Resnet (12 blocks)

- Mostly very good results, but some bad ones as well in presence of messy or odd looking input
- Network seems to stop learning after very few epochs. High Bias after very few epochs

Performance Tests: Vetoing

• *Glitch definition*: Cluster of at least 10 pixels with SNR above threshold (15,10,8). This choice mimics actual alert mechanisms in use at Virgo (Omicron)

 \bigcirc

SNR 15

- Use Clustering mechanism as Classifier on generated data
- **Test set**: 1083 Glitches, 536 empty background

Glitch generation Accuracy Model is able to correctly generate a glitch given control channels	99.0%	98.7%	97.8%
Glitch position Accuracy Model generates glitches with right time and frequency. Intensity is saturated at trigger SNR	25.9%	99.0%	99.6%

SNR 8

SNR 10

Performance Tests: Denoising

- Glitch definition: Cluster of at least 41 pixels (1% of total Qplot area) with SNR above threshold.
- Use Clustering mechanism as Classifier on cleaned data (i.e. real minus generated)
- Test set: 1083 Glitches, 536 empty background

WORK in PROGRESS

Future Work

- Streamline data acquisition and transfer to DataLake
- Perform channel analysis on bigger dataset for all channels
- Refine and implement data analysis protocol into shareable tool
- Retrain networks with new and more channels
- Deploy more complex generative models like GANs, Pix2Pix,...
- Generate synthetic GWs signals
- Design denoising pipeline
- Explore ideas from audio processing (like MFCCs, and so on)
- ... Suggestions?

OADING

Thank you!

Questions?

info@intertwin.eu

<u>intertwin_eu</u>

Backup slides

Gravitational Interferometers: very complex machines!

- **Extreme Precision**: They require incredibly precise measurement capabilities to detect tiny distortions in spacetime caused by gravitational waves.
- **Large Scale**: Interferometers such as LIGO and Virgo consist of multiple components, including long, L-shaped vacuum tubes (several kilometers in length) with mirrors suspended at their ends.
- **Isolation from Noise**: They need to isolate their sensitive instruments from various sources of noise, such as seismic activity, thermal fluctuations, and even quantum mechanical effects.
- High Vacuum Environment: To minimize interference from air molecules, interferometers operate in high vacuum environments
- Advanced Laser Technology: Interferometers rely on powerful lasers and intricate optical systems to precisely measure changes in the length of their arms.

Data Processing and Analysis: To keep track of every potential source of noise, Gravitational Interferometers have a very large [O(10^5)] number of control channels. Despite that, GWs signals are buried under a vast amount of noise.

https://www.virgo-gw.eu

https://www.virgo-gw.eu/imag

Workflow

- 1. Identify *safe* auxiliary channels correlated with glitches in main channel
- Generate glitches from selected channels with a simple NN as a p.o.c.
- 3. Increase complexity in NN architecture
- 4. Improve channel selection & Data preprocessing
- 5. Generate synthetic GWs and test the glitch subtraction procedure

Test on real GW data

LOADING

6.

What are Spectrograms?

Spectrograms are visual representations of the spectrum of frequencies of a signal as it varies with time

ransforms

$$X(\tau,\phi,Q) = \int_{-\infty}^{+\infty} x(t)w(t-\tau,\phi,Q)e^{-i2\pi\phi t}dt$$

$$w(t-\tau,\phi,Q) = \frac{C}{\sqrt{2\pi\sigma_t(Q,\phi)}} \exp\left[-\frac{(t-\tau)^2}{2\sigma_t(Q,\phi)^2}\right]$$

$$\sigma_t(Q,f)^2 = \frac{Q^2}{8\pi^2 f^2}$$

In practice, few lines of code thanks to gwpy!

from gwpy.timeseries import TimeSeries

filename='/data/datasets/intertwin-dati-aux/gspy_03a_Scattered_Light_V1/DdncGnx3ph.h5'

fout=h5.File(filename)

t_strain=TimeSeries(fout['DdncGnx3ph.h5']['V1:Hrec_hoft_16384Hz'])

t_strain=t_strain.whiten()

hq=t_strain.q_transform(frange=f_range)

25

- 20

- 15

- 10

Intensity

Correlations in Q-Plots: Peak frequencies

- Common peaks: peaks above intensity threshold within a given tolerance distance (Δt,Δf) in Q-Plot
- Apply analysis to each aux channel paired with strain channel
- Calculate correlation coefficient:

 $Corr_coeff = \frac{common peaks}{strain peaks}$

- Average over 1000 different "events" classified as Scattered Light with confidence ≥86%.
- Data source: VIRGO O3a
- Python: gwpy, lalframe, pandas

1

Time series

- 1. 12K Scattered Light events in O3a VIRGO
- 2. ± 3s around glitch
- 3. Resampling to 500Hz and whitening
- 4. Normalization to [0,1] range

64x64 ~ (1s)x(35Hz)

Qplots

. → 4.

Dataset

- 5. Qplot and cropping around highest peak frequency
- 6. Normalization to [0,1] range

- Some good results, but a lot of bad ones...
- Network seems to stop learning after few epochs

0 1.5 3 4.5 6 7.5 910.51213.515 Time [seconds]

25

0 1.5 3 4.5 6 7.5 910.51213.515

Time [seconds]

QPlots: Decoder CNN+ Resnet

- Using 64x64 model as pre-training, only one epoch of training is required!
- High Bias after very few epochs
- Network does not seem to notice light blue/green background (good for noise stability?)
- Bad results for messy (or odd looking) input
- Very similar loss and results for U-Net

Pix2Pix GAN

Paired Image-to-Image Gan maps the data from three auxiliary channels to the data in the strain.

This is a conditional adversarial network which learns the mapping from input to output images.

Status of the WP7 activities

- Internal architecture of the training subsystem defined
- Started first implementation of the training pipeline focusing on:
 - workflow execution (Airflow)
 - interface definition
 - o data transfer (Rucio/Kafka)

Activities on the K8s demo cluster at CNAF (WP5)

https://medium.com/@dulshanr12/airflow-log-integration-with-fluent-bit-elk-stack-kubernetes-f2afa3a6ff00

LOADING

Generated vs Real glitch distribution

What are generative models?

- Generative models are algorithms that learn to generate new data that is similar to the data they were trained on
- They learn to map data from the original high-dimensional space to the lower-dimensional latent space and then generate new data by sampling from this latent space.

Glitch Flow Pipeline

Glitch Flow Inference

SNR distribution of data

Model Performance

- The model correctly predicts the presence of noise in signal from only looking at aux channels in 100% of cases
- The model removes the noise from the signal in 59,7% of cases

How to improve

- Use more complex NN architectures
- Data augmentation
- Use more and more appropriate auxiliary channels
- Build more sophisticated tools for channel analysis
- Much more ...

The two auxiliary channels which were used in the analysis are:

V1:LSC_MICH_ERR

Deviation in the Michelson interferometer signal (sampling rate:10000 Hz, measured in Ampere).

V1:LSC_PR_CORR

Correction on the voltage in the Power Recycling cavity (sampling rate:10000 Hz, measured in Volts).

These channels are both safe, and they are used in the linear denoising in the strain channel.

Performance Tests: Denoising

We pass the subtraction of the real signals minus the generated ones to the classifier. For each threshold value of the SNR, we construct a confusion matrix. We plot the True Positive Rate (TPR) for two different studies.

Performance Tests: Vetoing

We construct a classifier which labels Qplots as glitches/not-glitches. It is based on a clustering algorithm: a glitch is defined as an area made of at least 10 pixels which have SNR equal or above 15.

1. Accuracy of glitch generation: 97.8 % of the generated data is identified as glitches by our classification algorithm (tested on a sample of 1083 generated signals plus 536 injected with background noise)

2. Accuracy of glitch positions: the generated glitch has the correct time-frequency coordinates in 99.6% of the cases

Works Well!

Performance Tests: Vetoing

- *Glitch definition*: Cluster of at least 10 pixels with SNR above threshold (15,10,8). This choice mimics actual alert mechanisms in use at Virgo (Omicron)
- Use Clustering mechanism as Classifier
- Test set: 1083 Glitches, 536 empty background

Accuracy of glitch generation

Model correctly predicts the presence of a glitch given control channels

Accuracy of glitch positions

Model correctly predicts time-frequency coordinates of glitch given control channels

