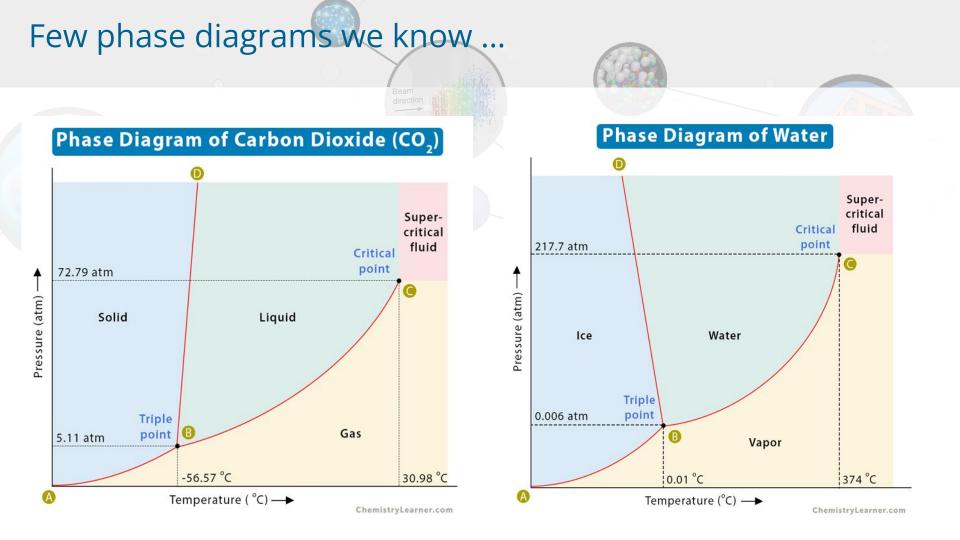


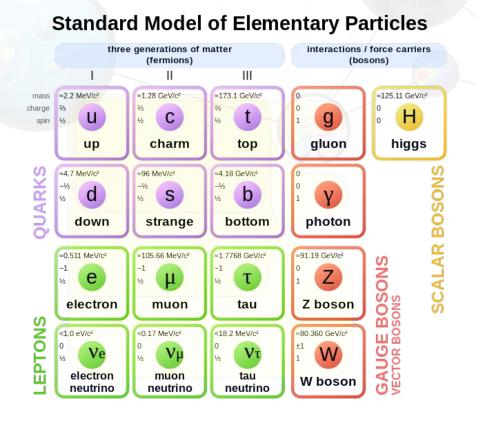
Al-Driven Exploration of Strongly Interacting Nuclear Matter under Extreme Conditions

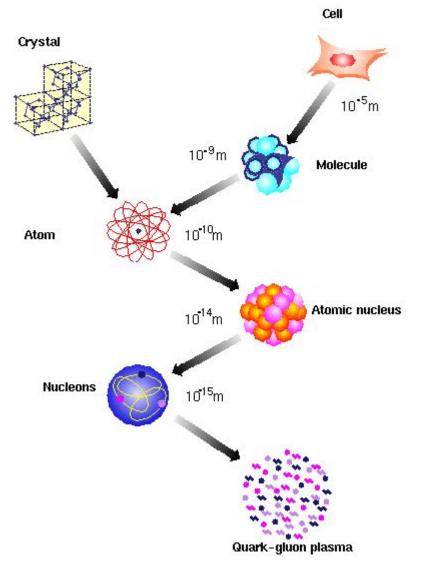
Manjunath Omana Kuttan, Kai Zhou, Jan Steinheimer, Horst Stoecker



Phase diagrams portray the behaviour of a substance with varying thermodynamic conditions

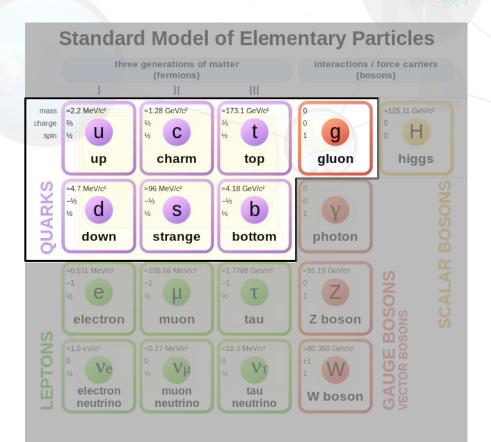
A phase diagram of fundamental matter?





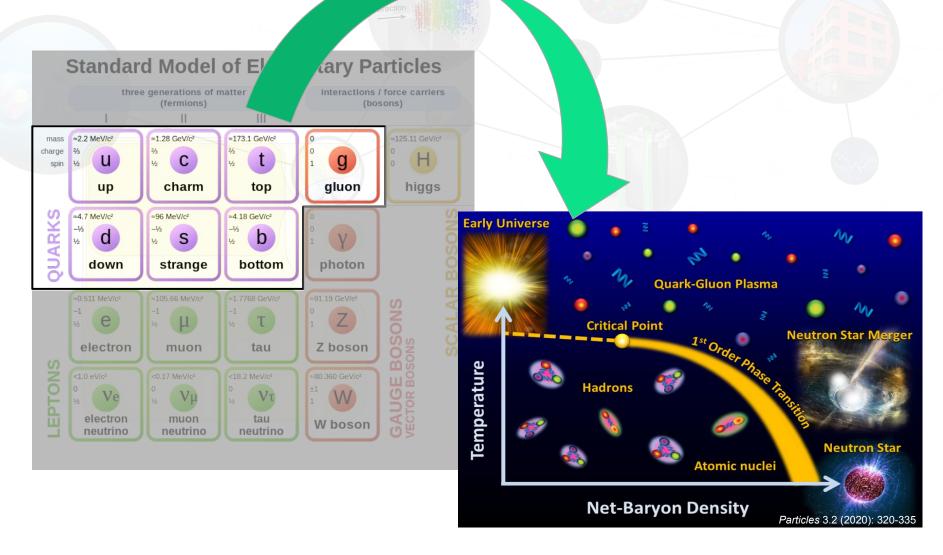
https://www.wattpad.com/404853180-science-for-thought-quark-gluon-plasma

A phase diagram of fundamental matter?



- ordinary matter: confined quarks
 only protons and neutrons
- → How does nuclear matter behave at high temperatures/ densities?

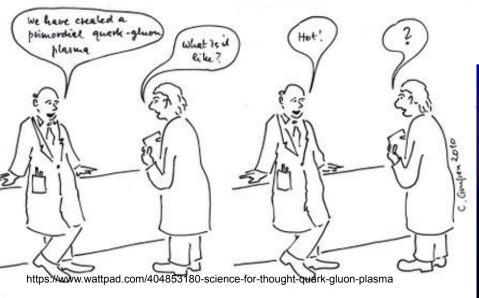
A phase diagram for fundamental matter?



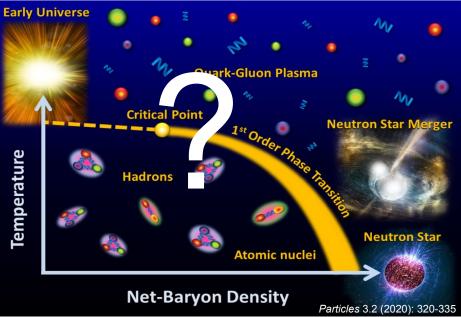
Can we construct a phase diagram of strongly interacting, nuclear matter?

The QCD phase diagram

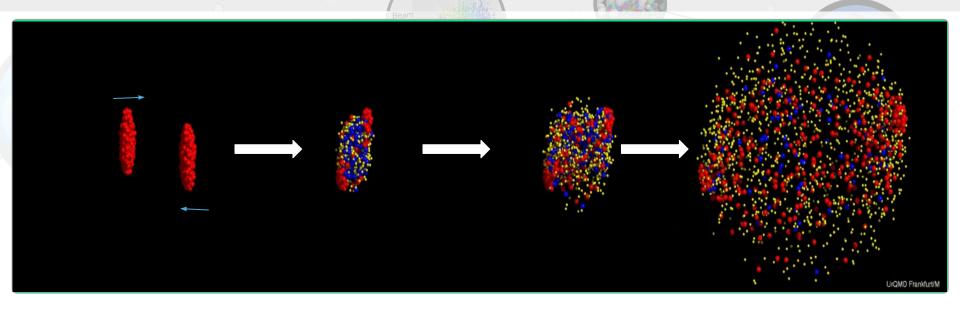
The QCD phase diagram is highly conjectured



How can we explore the phase diagram?



Creating hot-dense QCD matter in a lab



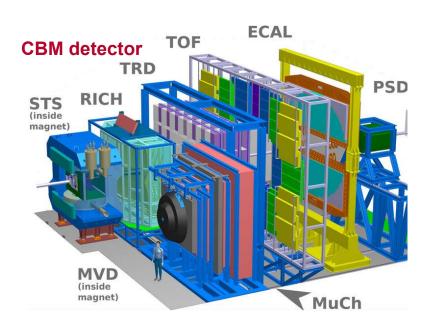
Heavy-ion collisions can create systems with extremely high temperatures and densities

Manjunath Omana Kuttan

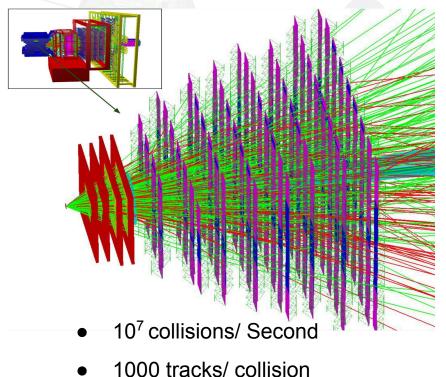
The CBM experiment at FAIR

- CBM studies Intermediate beam energies
 moderate temperatures and high
- Similar n_b, T found in neutron star mergers, supernova explosion etc.

densities



- explore high density QCD EoS
- search for phase transitions
- in medium hadronic properties



• 1 TB/s raw data

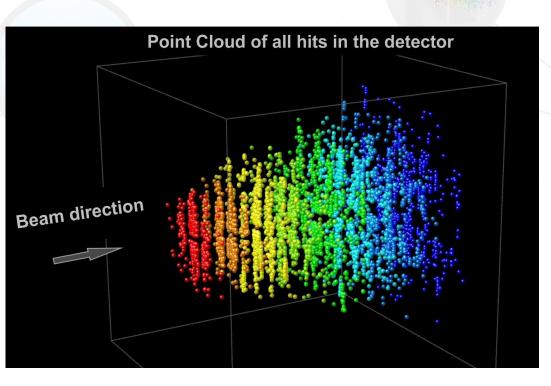
- → Limited first principle calculations
 - Effective models for high density
- → State of the art effective models are often slow
 - upto 1 hour/event at FAIR energies

How can AI be used to address these issues?

→ No smoking gun signals

- multiple observables with limited sensitivity
- bayesian inference, multi-param fits
- → Experimental uncertainties
 - collision centrality
 - high model dependencies in analysis

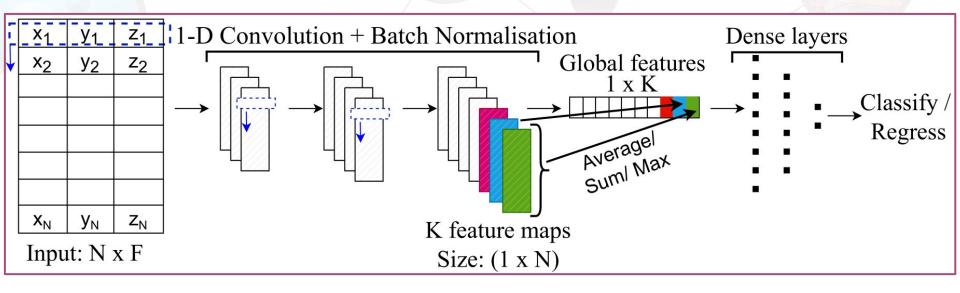
Deep Learning on experimental data



- Point cloud: set of data points
 - No ordering
 - sensors, detector data
 - tabular representation
- Electronic data: point cloud structure

Experimental data are point clouds !

Deep Learning on experimental data



PointNet based models learn global event features from experimental data

- → Limited first principle calculations
 - Effective models for high density
- → Effective models are slow
 - upto 1 hour/event at FAIR energies

Can AI improve the capability of an experiment?

→ No smoking gun signals

- multiple observables with limited sensitivity
- bayesian inference, multi-param fits

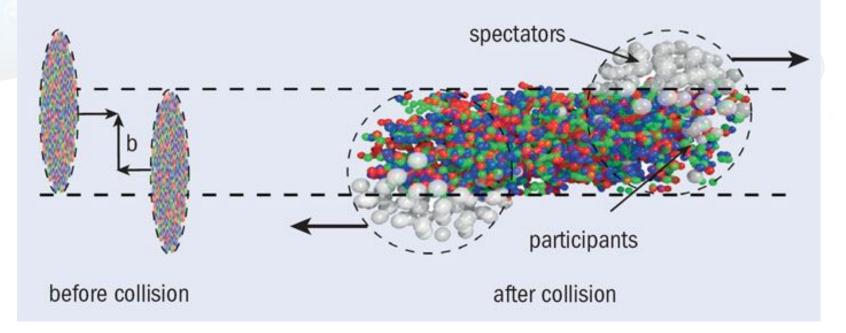
→ Experimental uncertainties

- collision centrality
- high model dependencies in analysis

PointNet based impact parameter determination

Phys.Lett.B 811 (2020) 135872 Particles 2021, 4(1), 47-52

Observables often depend strongly on collision centrality



Estimating the impact parameter directly is not possible experimentally

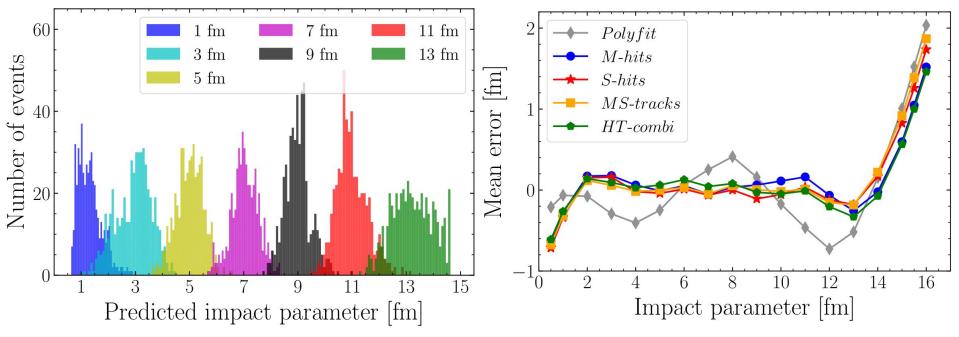
Experiments use $\mathrm{N}_{\mathrm{chg}}$ to estimate centrality

No event by event impact parameter available

PointNet based impact parameter determination

<u>Phys.Lett.B 811 (2020) 135872</u> <u>Particles 2021, 4(1), 47-52</u>

- precise and accurate prediction over wide range of impact parameters
- outperforms non-ML method (Polyfit)
- Fast event-by-event predictions : ~1 ms/ event
 - online event characterisation



- → Limited first principle calculations
 - Effective models for high density
- → Effective models are slow
 - upto 1 hour/event at FAIR energies

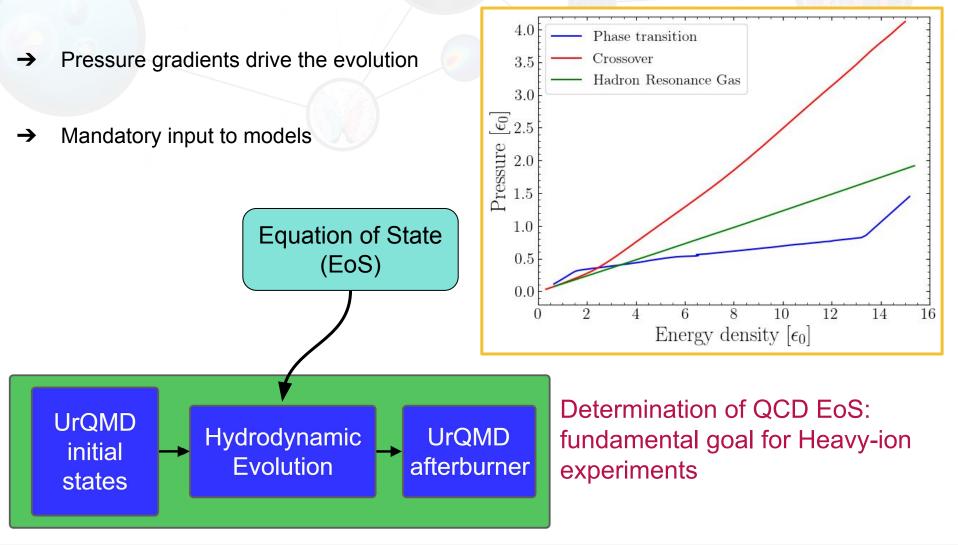
Can AI find better ways to analyse data?

- → No smoking gun signals
 - multiple observables with limited sensitivity
 - bayesian inference, multi-param fits
- → Experimental uncertainties
 - collision centrality
 - high model dependencies in analysis

Identiying phase transitions with PointNet

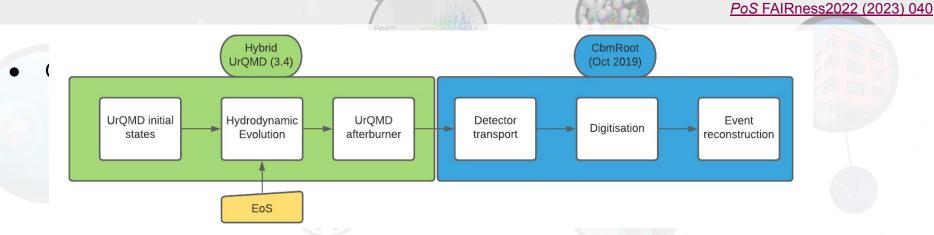
<u>JHEP 10 (2021) 184</u> PoS FAIRness2022 (2023) 040

→ The EoS gives the pressure as function energy densities and densities

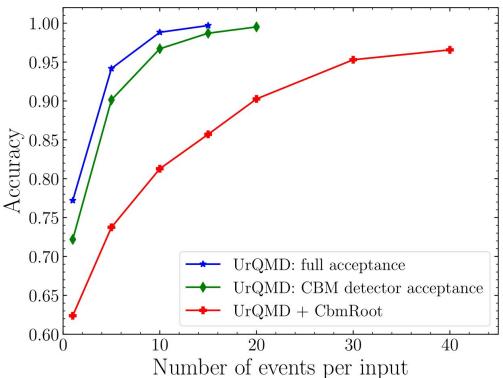


Manjunath Omana Kuttan

Identifying phase transition with PointNet



>95 % accuracy with just 40 events!
 realistic scenario



JHEP 10 (2021) 184

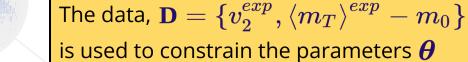
- → Limited first principle calculations
 - Effective models for high density
- → Effective models are slow
 - upto 1 hour/event at FAIR energies

AI based surrogate models for faster analysis?

→ No smoking gun signals

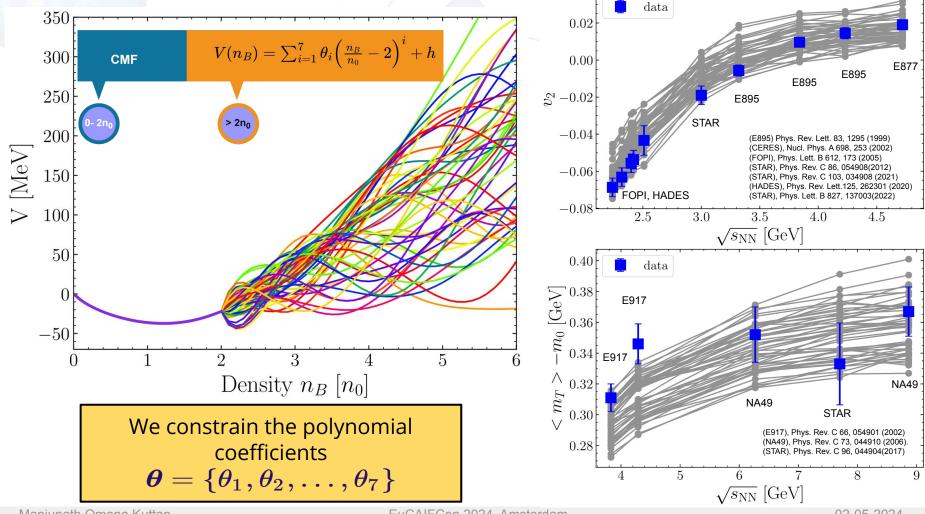
- multiple observables with limited sensitivity
- bayesian inference, multi-param fits
- → Experimental uncertainties
 - collision centrality
 - high model dependencies in analysis

Bayesian inference of the EoS



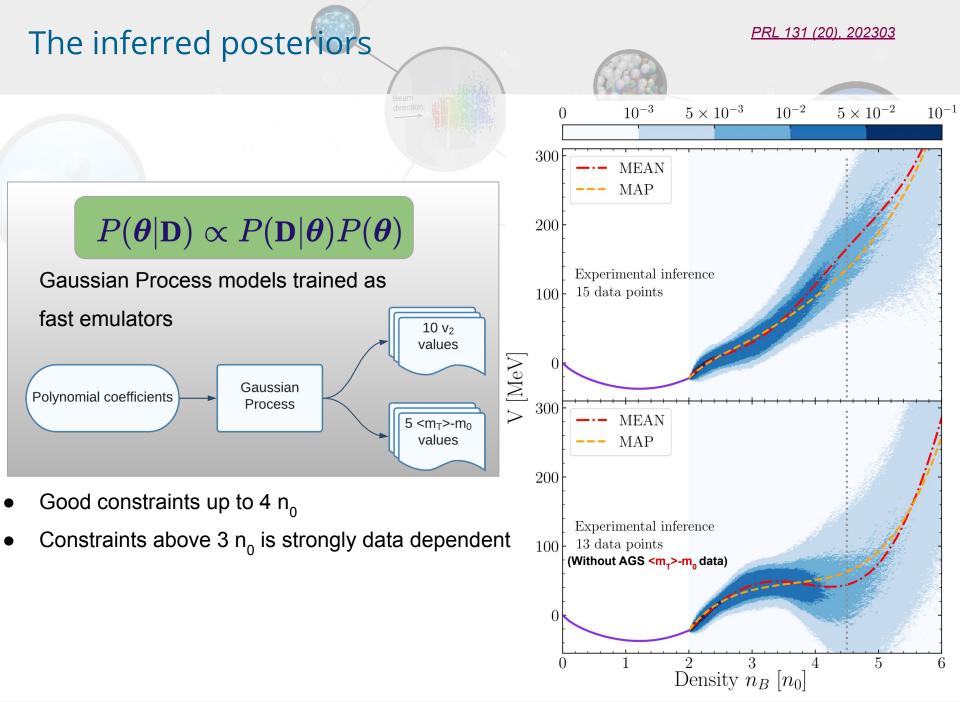
7th degree polynomial for potential above 2n_o

EoS as density dependent potentials



Manjunath Omana Kuttan

EuCAIFCon 2024, Amsterdam



- → Limited first principle calculations
 - Effective models for high density
- → Effective models are slow
 - upto 1 hour/event at FAIR energies

Realistic, Fast, AI based emulators?

- \rightarrow No smoking gun signals
 - multiple observables with limited sensitivity
 - bayesian inference, multi-param fits
- → Experimental uncertainties
 - collision centrality
 - high model dependencies in analysis

Generating collisions with DL

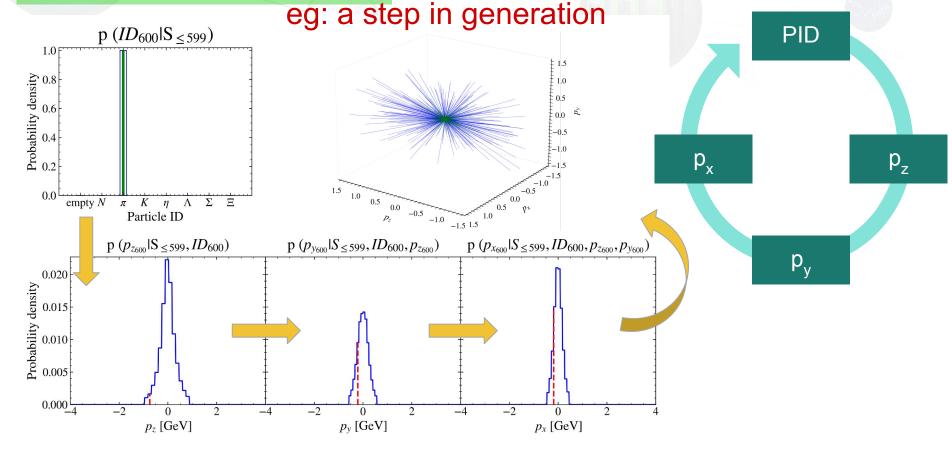
What's necessary:

- event by event generation
- generate large multiplicity ~1000
- capture correlations

6.59

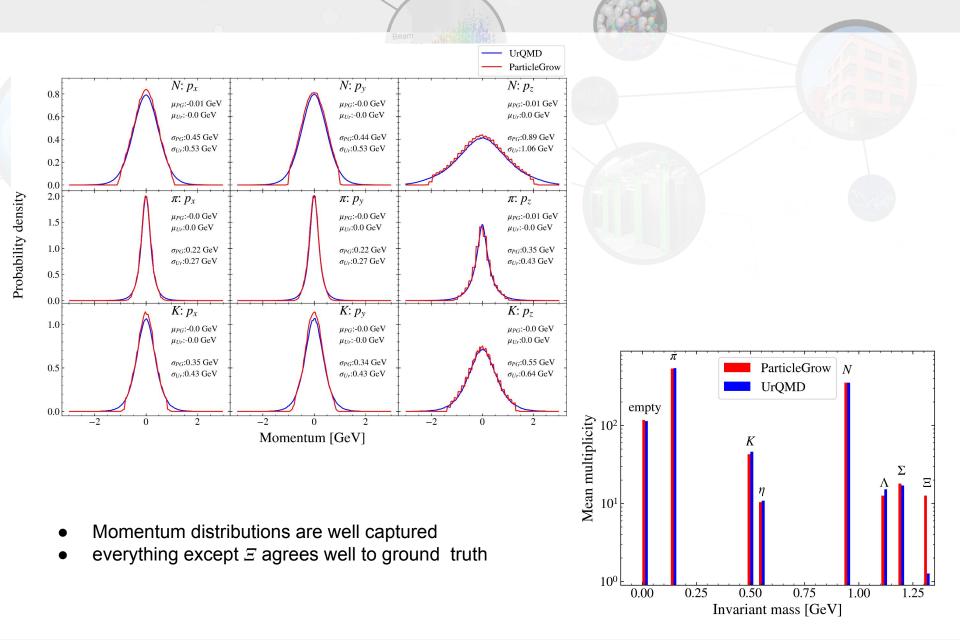
Autoregressive point cloud generation

- 7 particle species
- A particle:
 - PID, p_x, p_y, p_z



Manjunath Omana Kuttan

Performance of the model



The exciting, inevitable future!

