Regional groundwater modeling for estimating the drained fluxes by the ET works and their impact Guillemoto Quentin, Orban Philippe, Dassargues Alain, Nguyen Frédéric Liège University 06/12/2023 Einstein Telescope – Site Preparation Board Workshop 3

- Regional hydrogeological model
 - Objectives of the regional groundwater model
 - Conceptual model
 - Numerical model
 - Calibration
- Estimation of tunnels groundwater inflow and impacts to regional groundwater
- Conclusions & perspectives of the model

Objectives of the model

Open cross-border groundwater model for ecosystem services

- quantify quantitative impacts of ET tunnels implantations on groundwater
- estimate groundwater inflows in tunnels

Regional hydrogeological model extent

Aquifers

- all the aquifers are simulated until lower Famennian
- aquifers considered as connected
- with different hydrogeological properties

	Ere	Système	Série	Etage	Groupe	Formation	Membre	Lithologie		viation	Hyd rogéologie
	CENOZOI- QUE					Alluvions Modernes	Sables et graviers		AMO		Aquifère alluvial
r		QUATERNAIRE	HOLOCENE			Dépôts Tourbeux		Tourbières à sphaignes		RB	Aquifère des tourbes
		PALEOGENE	OLIGOCENE			Dépôts Sableux		Sables quartzeux souvent micacés - Lentilles d'argiles sableuses		BL	Aquifère des sables de remplissage
	MESOZOIQUE	CRETACE	SENONIEN	Maastrichtien		Gulpen		Craies glauconieuses, craies blanches avec silex noirs - Conglomérat à silex (SX)	GUL		Aquifère des craies du Crétacé
				Campanien		Vaals		Sables, silts et argiles glauconieux, à horizons indurés	' VAA		Aquifère - Aquitard de Vaals
				Santonien		Aachen		Argiles sitleuses et sableuses, silts argileux, sables blancs à niveaux indurés, localement lentilles graveleuses	AAC		Aquifère des sables du Santonien
		CARBONIFERE	NAMURIEN	Marsdenien Kinderscoutien Alportien Chokierien Arnsbergien	Houiller			Alternance de shales et de siltites, de grès argileux, de grès et de quartzites - Veines de charbon	HOU		Aquiclude à niveaux aquifères du Houiller
	PALEOZOIQUE		VISEEN	Livien	Juslenville	Seilles		Calcaires - Niveaux à ooïdes - Cherts	SEI		
						Lives		Calcaires - Nodules de cherts	LIV		
				Moliniacien	Bay- Bonnet	Moha		Calcaires grossiers généralement oolithiques - Cherts	мон		Aquifère des calcaires du Carbonifère
						Terwagne		Calcaires fins à grossiers	TER	BBN	
						Brèche de la Belle- Roche		Brèches calcaires	BBR		
			TOURNAISIEN	Ivorien	Bilstain	Dolomies de la Vesdre		Dolomies, dolomies crinoïdiques - Cherts et nodules siliceux	VES		
				Hastarien		Landelies		dolomitisés au sommet	LAN	BIL	Aquifère - Aquitard - Aquiclude de l'Hastarien
						Pont d'Arcole		Shales, calcschistes avec nodules calcaires	PDA		
						Hastière		Calcaires moyens à grossiers - Calcaires argileux au sommet	HAS		
			SUPERIEUR	Famennien		Dolhain		Calcaires crinoïdiques et grès carbonatés - Intercalations de shales et siltites	DOL		Aquifère des grès du
						Monfort-Evieux		Grès micacés feldspathiques, grès carbonatés - Shales - Siltites - Nodules carbonatés	N	ΛE	Famennien
						Souverain-Pré		Calcaires argileux et noduleux	SVP		
						Esneux		Grès fins plus ou moins argileux	ESN HOD		Aquitard du Famennien -
						Hodimont		Siltites micacées - Nodules carbonatés			
				Frasnien		Lambermont		Shales, siltites, calcaires, schistes nodulaires	LAM		rrashien
						Aisemont		Shales, calcschistes et calcaires organoclastiques		IS	

Table of hydrogeological units Hydrogeological map. RUTHY and DASSARGUES, 2009. Cretaceous aquifers (sands, chalk)

- Houiller (Namurian) (shales, siltstones, sandstones)
- Visean and Tournaisian (limestones)
- Famennian (limestones-sandstones)
- Lower Famennian aquitard (siltstones)

Geology

European Regional Development Fund

Conceptual model

- natural boundaries of the model:
- based on geology
- rivers

North and East : no natural boundary groundwater measurements set as prescribed heads BCs

6

Numerical model

- Feflow[®] hydrogeological flow model construction:
 - finite element mesh
 - steady flow model based on 2018 data
- Regional database used in the model:
 - groundwater water level observations, groundwater abstractions (Wallonia, Germany, The Netherlands)
 - hydraulic conductivities
 - topography geology

River network, groundwater level measurements and mesh of the finite elements model

Mesh sizes about 500 meters length

Hydrogeological model according to regional geological model

Numerical model calibration

Groundwater levels calibration

Hydraulic conductivity ranges taken from previous studies in the region

	K m/s		K m/d		
Geology	min	max	min	max	
Cretaceous	1.00E-07	1.00E-03	0.00864	86.4	
Houiller	1.00E-08	1.00E-05	0.000864	0.864	
Visean and Tournaisian	1.00E-07	5.00E-03	0.00864	432	
Famennian	1.00E-07	1.00E-05	0.000864	0.864	

Calibration with Pest software 50 pilot points/geological layers, considering prior hydraulic conductivities.

Plot of groundwater level observations and groundwater level simulations.

Numerical model calibration

Calibration of river base flows

	Area (km²)	Rainfall (mm)	Recharge (mm/y)	Observed base flow m ³ /s	Simulated base flow (m ³ /s)
Fond de Forêt	39	885	123	0.17	0.19
Berwinne Dalhem	119	885	123	0.43	0.50
Berwinne Valdieu Dalham	49	885	140	0.20	0.24
Bolland	31	885	96	0.14	0.12
Veul Cottessen	123	929	166	0.4*	0.65

Measured base-flow are estimated with a classical statistical method applied to river hydrograms

4 watershed with data for now

Map of natural groundwater recharge calibrated from groundwater contribution to river flow, according to subsurface geology, urbanization and rainfall observations

Simulated groundwater levels

Estimation of tunnels water inflow and impacts to regional groundwater

Method:

- estimate analytically the inflow in the tunnels
- simulate the impacts with the groundwater numerical model

Tunnel surrounded by an impermeable lining Kolymbas and Wagner (2007)

uniform drainage layer decreasing the water pressure at the tunnel to 10 bars = hydraulic head h_a = 100 m

Inflow and impacts of groundwater drained by the tunnel on regional groundwater resources

In the case of K_{ag}=10⁻⁸ m/s conductivity, calculations with analytical solution: 380 m³/d -> 4850 m³/d (depending on H)

for a **380 m³/d** tunnel water inflow

for a **4850 m³/d** tunnel water inflow

Interreg

Euregio Meuse-Rhine

Inflow and impacts of groundwater drained by the tunnel on regional groundwater ressources

In the case of $K_{aq} = 10^{-7} \text{ m/s}$ conductivity, calculations with analytical solution: 3800 m³/d -> 48500 m³/d (depending on H)

for a **4850 m³/d** tunnel water inflow

for a **48500 m³/d** tunnel water inflow

Conclusions

05.12.2023

- Regional numerical model adapted to predict impacts of tunnels on regional groundwater resource
- Analytically calculated inflows and first estimation of the effects on the water table and base river flows
 - estimation of hydraulic conductivities near tunnels are needed.
 - if natural conductivities around tunnel K>10⁻⁸ m/s, grouting is needed to reduce inflow rates

Feflow regional 3D groundwater model

Perspectives

- Numerical model improvements
 - new geological model data
 - additional hydro measurements for the robustness of the model
 - sensitivity of model results to hydraulic conductivity values (inflows, regional impacts)
- Further sub-models (local models) to be developed using regional model for BCs
 - fine discretization of tunnels, complex caverns, local heterogeneities
 - transient simulations of the tunnel drainage impacts, during excavations works
- The current numerical model can be used, as an ideal tool, for future design simulations of the tunnel

Thank you for your attention !

q.guillemoto@uliege.be

