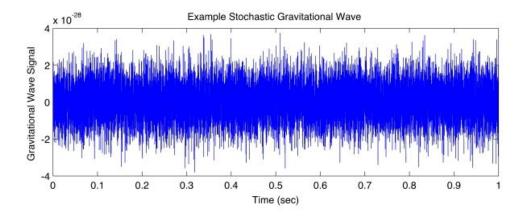

Gravitational Waves Data Analysis (for CBC)

Stefano Schmidt ET-NL Nikhef 25 October 2023 - Maastricht

Why data analysis?

Questions:


1. Is there a signal in the data?

2. Which type of signal was detected?

3. Given one (or more) signal, what are the physical implications?

Possible sources

- Burst
- Compact Binaries
- Continuous waves
- Stochastic

credits: LSC

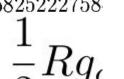
Questions (for CBC):

- 1. Is there a signal in the data? GW Searches
- 2. Which type of signal was detected?

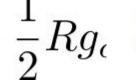
 Parameter Estimation
- 3. Given one (or more) signal, what are the physical implications? *Population, Tests of GR, Fundamental Physics, Cosmology...*

Prerequisite: Waveforms

 $m_1, m_2, \mathbf{s}_1, \mathbf{s}_2$

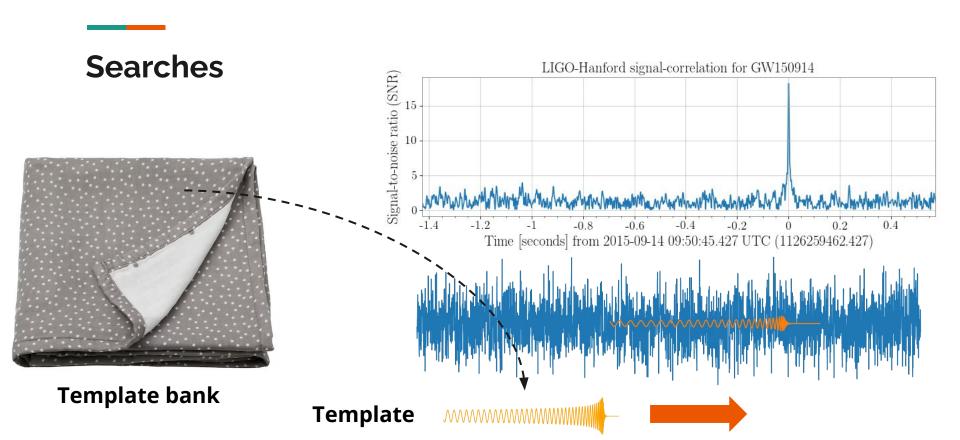

$$\phi(t) = -\frac{1}{\nu}\Theta^{5/8} \left\{ 1 + \left(\frac{3715}{8064} + \frac{55}{96}\nu \right) \Theta^{-1/4} - \frac{3}{4}\pi\Theta^{-3/8} \right.$$

$$\left. + \left(\frac{9275495}{14450688} + \frac{284875}{258048}\nu + \frac{1855}{2048}\nu^2 \right) \Theta^{-1/2} \right.$$


$$\left. + \left(-\frac{38645}{172032} + \frac{65}{2048}\nu \right) \pi\Theta^{-5/8} \log \left(\frac{\Theta}{\Theta_0} \right) \right.$$

$$\left. + \left[\frac{831032450749357}{576825222758} \right]^{53} \left. \frac{107}{448} \log \left(\frac{\Theta}{256} \right) \right.$$

 $+\mathcal{O}\left(\frac{1}{c^8}\right)$,

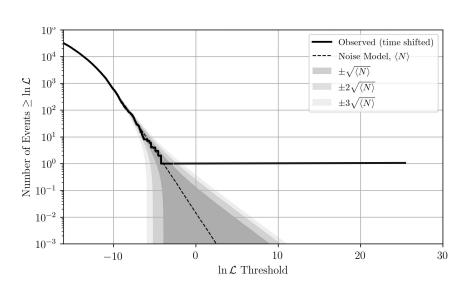

$$+\frac{2}{1835008}$$
 $\nu -\frac{1}{17}$

$$\frac{2}{1835008}\nu - \frac{2}{17} + \left(\frac{188516689}{173408256} + \frac{488825}{516096}\nu - \frac{141769}{516096}\nu^{2}\right)\pi\Theta^{-7/8}$$

$$=8$$

$$\pi T_{\alpha\beta}$$

(5.260)



Searches - bis

Assign a likelihood to each trigger

$$\mathcal{L} = \frac{p(\text{trigger}|\text{signal})}{p(\text{trigger}|\text{noise})}$$

How often a given \mathcal{L} value is measured by chance?

Parameter Estimation

Question

What is the best simulated signal that matches the data?

Solution

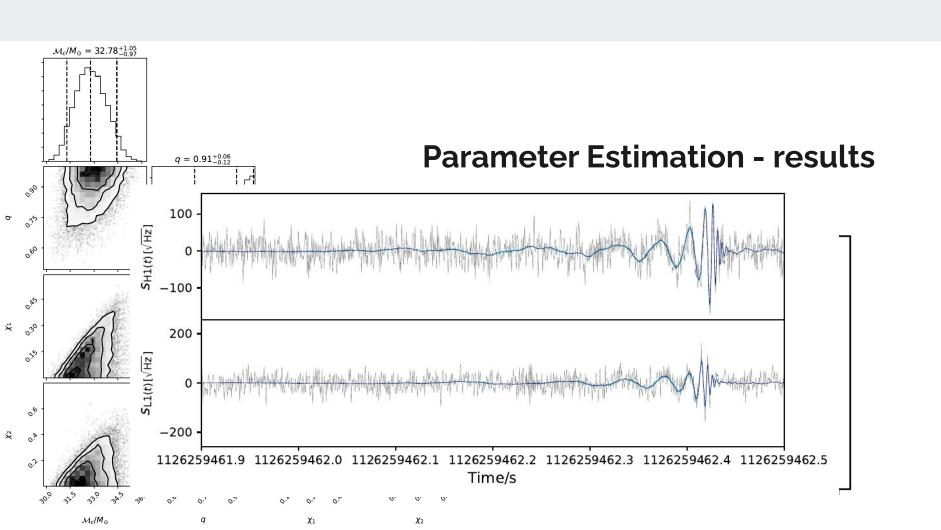
Trial and error

Parameter Estimation - recipe

- Take many WFs
- Compute how "similar" they are to the data
- Aggregate the results (i.e. measure CBC parameters)

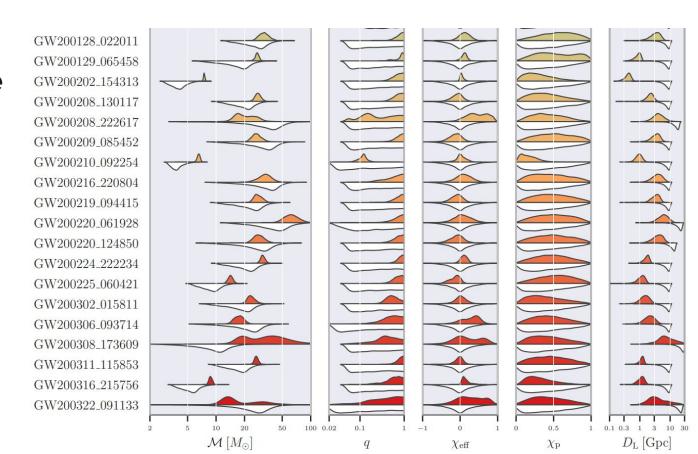
$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) p(\theta)$$

Posterior Likelihood Prior


Parameter Estimation - evidence

$$p(\mathcal{D}) = \int d^D \theta \ p(\mathcal{D}|\theta) p(\theta)$$

 $p(\mathcal{D}|\text{model})$


Bayes Factor

$$\frac{p(\mathcal{D}|\text{model}_1)}{p(\mathcal{D}|\text{model}_2)}$$

A catalogue

Thicker = more likely true value

A now it comes the nice part...

- Population studies
- Tests of GR
- Neutron Star Equation of State
- Cosmology
- Lensing
- ...

Questions (for CBC):

- 1. Is there a signal in the data?

 Matched filtering
- 2. Which type of signal was detected?

 Bayesian Parameter Estimation
- 3. Given one (or more) signal, what are the physical implications? *Soooooo many*

Thank you:D