

Measuring CP-violating phase ϕ_s

Lera Lukashenko

Nikhef Junior Colloquium

PhDs care about details. Old farts, like me, don't. Anonymous Nikhef Senior

$$E_{\pm} = \frac{1}{2} \left[e^{+i\omega t} \pm e^{-i\omega t} \right] \quad \text{with } \omega = \frac{\Delta m}{2} + i \frac{\Delta \Gamma}{4}$$

$$|E_{\pm}(t)|^{2} = \frac{1}{2} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) \pm \cos\left(\Delta mt\right) \right]$$
$$E_{+}^{*}(t)E_{-}(t) = \frac{1}{2} \left[-\sinh\left(\frac{\Delta\Gamma}{2}t\right) + i\sin\left(\Delta mt\right) \right]$$

$$\begin{aligned} |\mathcal{A}_{i}(t)|^{2} &= \mathcal{A}_{i}^{*}(t)\mathcal{A}_{i}(t) \text{ (note : no summation!)} \\ \mathcal{A}_{i}^{*}(t)\mathcal{A}_{j}(t) &= \frac{a_{i}^{*}a_{j}e^{-t/\tau}}{1+C} \begin{bmatrix} (1+C)|E_{+}(t)|^{2} + \eta_{i}\eta_{j}(1-C)|E_{-}(t)|^{2} \\ &-\eta_{j}(D+iS)E_{+}^{*}E_{-} - \eta_{i}(D-iS)E_{+}E_{-}^{*} \end{bmatrix} \end{aligned}$$

$$-\eta_{j}(D+iS)E_{+}^{*}E_{-} - \eta_{i}(D-iS)E_{+}E_{-}^{*} \right]$$

$$= \frac{a_{i}^{*}a_{j}e^{-t/\tau}}{1+C} \left[\left(\frac{1+\eta_{i}\eta_{j}}{2} + \frac{1-\eta_{i}\eta_{j}}{2}C \right) \cosh\left(\frac{\Delta\Gamma}{2}t\right) + \left(\frac{1-\eta_{i}\eta_{j}}{2} + \frac{1+\eta_{i}\eta_{j}}{2}C \right) \cos(\Delta m t) + \left(\frac{\eta_{i}+\eta_{j}}{2}D - \frac{\eta_{i}-\eta_{j}}{2}iS \right) \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \left(\frac{\eta_{i}+\eta_{j}}{2}S + \frac{\eta_{i}-\eta_{j}}{2}iD \right) \sin(\Delta m t) \right]$$

$$(5)$$

$q_T = +1$	$q_T = -1$		$\cosh\left(\frac{\Delta\Gamma}{2}t\right)$	$q_T \cos(\Delta m t)$	$\sinh\left(\frac{\Delta\Gamma}{2}t\right)$	$q_T \sin(\Delta m t)$
$ \mathcal{A}_0(t) ^2$		$\frac{ a_0 ^2 e^{-t/\tau}}{1+q_T C}$	1	C	D	S
$ \mathcal{A}_{\parallel}(t) ^2$		$\frac{ a_{\parallel} ^2 e^{-t/\tau}}{1+q_T C}$	1	C	D	S
$ \mathcal{A}_{\perp}(t) ^2$		$\frac{ a_{\perp} ^2 e^{-t/\tau}}{1+q_T C}$	1	C	-D	-S
$\Im(\mathcal{A}_{\parallel}^{*}(t)\mathcal{A}_{\perp}(t))$		$\frac{\Re(a_{\parallel}^*a_{\perp})e^{-t/\tau}}{1+q_TC}$	0	0	-S	D
		$\frac{\Im(a_{\parallel}^*a_{\perp})e^{-t/\tau}}{1+q_TC}$	C	1	0	0
$\Re(\mathcal{A}_0^*(t)\mathcal{A}_{\parallel}(t))$		$\frac{\Re(a_0^*a_{\parallel})e^{-t/\tau}}{1+q_TC}$	1	C	D	S
		$\frac{\Im(a_0^*a_{\parallel})e^{-t/\tau}}{1+q_T C}$	0	0	0	0
$\Im(\mathcal{A}_0^*(t)\mathcal{A}_{\perp}(t))$		$\frac{\Re(a_0^*a_\perp)e^{-t/\tau}}{1+q_T C}$	0	0	-S	D
		$\frac{\Im(a_0^*a_\perp)e^{-t/\tau}}{1+q_TC}$	C	1	0	0
$ \mathcal{A}_S(t) ^2$		$\frac{ a_S ^2 e^{-t/\tau}}{1+q_T C}$	1	C	-D	-S
$\Re(\mathcal{A}_{S}^{*}(t)\mathcal{A}_{\parallel}(t))$		$\frac{\Re(a_S^*a_{\parallel})e^{-t/\tau}}{1+q_TC}$	C	1	0	0
		$\frac{\Im(a_S^*a_{\parallel})e^{-t/\tau}}{1+q_TC}$	0	0	-S	D
$\Im(\mathcal{A}_S^*(t)\mathcal{A}_\perp(t))$		$\frac{\Re(a_S^*a_\perp)e^{-t/\tau}}{1+q_T C}$	0	0	0	0
		$\frac{\Im(a_S^*a_\perp)e^{-t/\tau}}{1+q_T C}$	1	C	-D	-S
$\Re(\mathcal{A}_S^*(t)\mathcal{A}_0(t))$		$\frac{\Re(a_S^*a_0)e^{-t/\tau}}{1+q_TC}$		1	0	0
		$\frac{\Im(a_S^*a_0)e^{-t/\tau}}{1+q_T C}$	0	0	-S	D

(1)

(2)

(3)

(4)

$$\begin{aligned} |\mathbf{A}(t) \wedge \hat{n}|^2 &= \frac{1}{2} |\mathcal{A}_{\parallel}(t)|^2 \sin^2 \psi \cos^2 \theta + \frac{1}{2} |\mathcal{A}_{\perp}(t)|^2 \sin^2 \psi \sin^2 \theta \sin^2 \phi \\ &+ -\Im(\mathcal{A}_{\parallel}^*(t)\mathcal{A}_{\perp}(t)) \sin^2 \psi \cos \theta \sin \theta \sin \phi \\ &+ |\mathcal{A}_0(t)|^2 \cos^2 \psi \cos^2 \theta + \frac{1}{2} |\mathcal{A}_{\perp}(t)|^2 \sin^2 \psi \sin^2 \theta \cos^2 \phi \\ &+ -\sqrt{2}\Im(\mathcal{A}_{\perp}^*(t)\mathcal{A}_0(t)) \cos \psi \cos \theta \sin \psi \sin \theta \cos \phi \\ &+ |\mathcal{A}_0(t)|^2 \cos^2 \psi \sin^2 \theta \sin^2 \phi + \frac{1}{2} |\mathcal{A}_{\parallel}(t)|^2 \sin^2 \psi \sin^2 \theta \cos^2 \phi \\ &+ \sqrt{2}\Re(\mathcal{A}_0^*(t)\mathcal{A}_{\parallel}(t)) \cos \psi \sin \psi \sin^2 \theta \sin \phi \cos \phi \\ &= |\mathcal{A}_0(t)|^2 \cos^2 \psi (\cos^2 \theta + \sin^2 \theta \sin^2 \phi) \\ &+ \frac{1}{2} |\mathcal{A}_{\parallel}(t)|^2 \sin^2 \psi (\cos^2 \theta + \sin^2 \theta \cos^2 \phi) \\ &+ \frac{1}{2} |\mathcal{A}_{\perp}(t)|^2 \sin^2 \psi \sin^2 \theta \\ &+ -\Im(\mathcal{A}_{\parallel}^*(t)\mathcal{A}_{\perp}(t)) \sin^2 \psi \cos \theta \sin \theta \sin \phi \\ &+ -\sqrt{2}\Im(\mathcal{A}_{\perp}^*(t)\mathcal{A}_{0}(t)) \cos \psi \sin \psi \sin^2 \theta \sin \phi \cos \phi \\ &= \frac{1}{2} |\mathcal{A}_{\parallel}(t)|^2 \sin^2 \psi (1 - \sin^2 \theta \sin^2 \phi) \\ &+ \frac{1}{2} |\mathcal{A}_{\perp}(t)|^2 \sin^2 \psi \sin^2 \theta \\ &+ |\mathcal{A}_0(t)|^2 \cos^2 \psi (1 - \sin^2 \theta \cos^2 \phi) \\ &+ \frac{1}{2} \mathcal{A}_{\parallel}^*(t)\mathcal{A}_{\perp}(t)) \sin^2 \psi \sin(2\theta) \sin \phi \\ &+ \frac{1}{2\sqrt{2}}\Im(\mathcal{A}_{\parallel}^*(t)\mathcal{A}_{\perp}(t)) \sin(2\psi) \sin(2\theta) \cos \phi \\ &+ \frac{1}{2\sqrt{2}}\Re(\mathcal{A}_{\parallel}^*(t)\mathcal{A}_{\parallel}(t)) \sin(2\psi) \sin^2 \theta \sin(2\phi) \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぐら

Physics laws are the same everywhere and always

CP-conservation

anti-matter

CP-violation

anti-matter

matter - anti-matter asymmetry is ~ $\mathcal{O}(10^{-10})$

Sakharov conditions for baryogenesis

- 1. Baryon number violation
- 2. Interactions out of thermal equilibrium
- 3. C- and CP-violation

in SM But only 10^{-20} from SM quark sector CPV

Sakharov, A. D., *JETP Letters*, 5 (1967) 32-35

: amount of mixing induced CP-violation in
$$B_s^0$$

$$\phi_s = \phi_s^{SM} + \phi_s^{NP}$$
Hard to compute in SM

$$\phi_s^{SM} = \phi_s^{LO} + \Delta \phi_s^{HO}$$

But there is a decay where $\Delta \phi_s^{HO}$ suppressed by a factor of 0.05

M.Z.Barel, K.DeBruyn, R.Fleischer, E.Malami, J.Phys. G (2021) 48: 6

"golden mode"

$$\left| \begin{array}{c} \mu^{+} \mu^{-} \\ B_{s}^{0} \end{array} \right|^{\prime} W \phi(1020)$$

How is $B_s^0 \rightarrow J/\psi\phi$ detected?

I only talk about my personal work here

decay rate $\frac{\sqrt{d\Gamma}}{dt} = \sum_{k=1}^{10} C_k f_k(\Omega) \left[p \Gamma_k(t \mid B_s^0) + (1-p) \Gamma_k(t \mid \overline{B_s}^0) \right] \varepsilon(t, \Omega) \otimes R(t \mid \sigma_t)$

flavour tagging

detector effects

decay rate $\frac{\sqrt{d\Gamma}}{dt} = \sum_{k=1}^{10} C_k f_k(\Omega) \left[p \Gamma_k(t \mid B_s^0) + (1-p) \Gamma_k(t \mid \overline{B_s^0}) \right] \varepsilon(t, \Omega) \otimes R(t \mid \sigma_t)$

flavour tagging

detector effects

flavour tagging

How clean is the sample?

flavour tagging

detector effects

1. Background subtraction with sPlot

flavour tagging

detector effects

1. Background subtraction with sPlot

physics flavour tagging detector effects

1. Background subtraction with sPlot

Key assumption: discriminating variable and observable are statistically independent!

Flavour tagging is the key! Defines effective statistical power of a sample

$$\int_{i} \sigma_{stat} = \frac{1}{\sqrt{\varepsilon_{tag}(1 - 2p_{mistake})N}} \\ \approx 4\%$$

I ignore detector effects part for the sake of time

3. Results

$\phi_s = -0.039 \pm 0.022(stat.) \pm 0.006(syst.)$ [rad] WORLD'S BEST!

The CP-violation in $B_s^0
ightarrow J/\psi \phi$ is not observed yet

Take home messages

- There is not enough CP-violation in quark sector in Standard Model. New Physics is necessary.
- ϕ_s is one of the probes, sensitive to the New Physics contributions, that can modify the amount of CP-violation
- The best decay to measure ϕ_s is $B^0_s
 ightarrow J/\psi \phi$
- We have not yet discovered CP-violation in $B_s^0 \to J/\psi \phi$
- Need more statistics and not just from LHCb: ATLAS and CMS have to chip in

Back up slides

1.
$$\psi_{I} \neq \psi_{m}$$

2. 3 generations of matter

$$\begin{pmatrix} I & II & III \\ I & III & III \\ \begin{pmatrix} d_{I} \\ s_{I} \\ b_{I} \end{pmatrix} = \begin{pmatrix} I & II & III \\ I & III & III \\$$

CKM matrix

1.
$$\psi_I \neq \psi_m$$

2. 3 generatio

 $P(X \to f) \neq P(\overline{X} \to \overline{f})$

 B_s^0 meson oscillation

Amount of CP-violation in Standard Model quark sector

There is not enough CP-violation in quark sector alone

1. measure decay rate $B_s^0, \overline{B_s^0}$

Dissecting ϕ_s measurement measure decay rate $\overline{B_s^0, B_s^0}$ 1. a.u. know initial flavour $B_s^0 \mid \mid B_s^0$ 2. $\frac{d\Gamma(t|B_s^0)}{dt}$ $\frac{d\Gamma(t|\overline{B_s^0})}{dt}$ 0.8 0.6 B_s^0 0.4 simplified pdf* $\propto [1 \pm \sin(\phi_s) \sin(\Delta m_s t)] e^{-t\Gamma}$ 0.2 oscillation decay 0.0 2 3 4 () time [ps] $\overline{B_s^0}$

*assuming lifetimes of B-meson mass eigenstates are the same

*assuming lifetimes of B-meson mass eigenstates are the same

total angular momentum

Helicity angles

Helicity angles

flavour tagging

2. Decay time resolution OFF

flavour tagging

2. Decay time resolution ON

flavour tagging

2. Decay time resolution

Key assumption:

resolution matters for oscillations, but not for lifetimes!

Negative times from time resolution

48

3. Detector effects: resolutions and acceptances

Decay time acceptance

angular and decay time acceptances are independent

3.

3. Detector effects: resolutions and acceptances

Angular acceptance

arXiv:2308.01468

Meta analysis

