
Zef Wolffs

PARALLEL
PROGRAMMING:
BASIC CONCEPTS

C++ Parallel Programming2

• A type of computation in which multiple calculations or processes are executed
simultaneously

• Can be realised in multiple ways
• Task parallelism: tasks get distributed to processes or threads, which they

execute on the same data
• Data parallelism: each process or thread does the same work on its own data
• Pipeline parallelism: extension of task parallelism where workload is split up in

a sequence of tasks, which may be dependent on one another

• Processes may have a way of communicating with each other

WHAT IS PARALLEL COMPUTING

C++ Parallel Programming3

• A thread is simply a set of instructions to be executed by the computer
• Example of a thread for boiling an egg:

• Take pan -> Fill pan with water -> Put pan on stove -> …

• Processing units such as the CPU or the GPU can (only) execute threads
• GPU’s are sometimes capable of running thousands of threads in parallel
• A CPU can only execute a single thread at a time, however, technologies such

as hyperthreading still can speed up multiple thread execution on a single
CPU

• Threads share heap (dynamic) memory, but have their own stack (static)

THREADS

C++ Parallel Programming4

• A process is an instance of a computer program to be executed by the computer
which may contain multiple threads, its own stack and heap, and any other
required resources
• All threads of a process share the heap memory allocated to the process
• Example of a process could be “making breakfast”, of which boiling an egg

could be a thread

• Multiprocessing is typically preferred over multithreading when more complex
workloads (entire programs) are to be executed in parallel but does induce more
overhead due to the need for resource (heap memory) allocation
• Terms are often used interchangeably, and are very similar especially on unix

PROCESSES

C++ Parallel Programming5

• This is a valid question, a good parallel program can be hard to set up properly
• Especially difficult to debug

• Save walltime
• e.g. for high frequency trading firms which benefit from making trading

decisions faster than competitors
• Solve more complex problems

• e.g. for complex physics models that need to be fit to large datasets
• Provide concurrency

• e.g. for a webserver that needs to handle multiple website visitors
simultaneously

WHY PARALLEL COMPUTING

C++ Parallel Programming6

• Since parallelising code can be hard, a valid question arises: Does the time won
from parallelising the code outweigh the extra time spent in development?

• Problems where parallel computations (tasks) are not dependent on eachother
are easy to parallelise, and often called “embarrassingly parallel”
• Example: Generating 100 random numbers. Each random number can be

generated independently, and the same program to generate 1 random
number can in principle be run independently 100 times

• Most problems have a section that can be parallelised and a section that cannot
be parallelised, the latter strongly limits potential speedup

IS IT WORTH IT TO GO PARALLEL FOR YOUR CODE?

C++ Parallel Programming7

• Amdahl’s law quantifies upper limit on parallel speedup:

• S: speedup, i.e. time with n processors divided by time with one processor
• : parallel fraction of code

• : serial fraction of code
• N: number of processors

• Limit cases

• , S = N (generating N random numbers)

• N = S = 1/ ; e.g. if 10% of code is serial, speedup strictly limited to 10

S = 1/(fs + fp/N)

fp
fs

fs = 0 fp = 1 →
∞ → fs

AMDAHL’S LAW

C++ Parallel Programming8

• Amdahl’s law is still an upper limit, reality is often worse
due to
• Load balancing (processes waiting for each other)
• Communications
• I/O
• Scheduling

AMDAHL’S LAW

C++ Parallel Programming9

• When parallel tasks are dependent on one another, the processes executing
those tasks may need to communicate
• Example is a numerical simulation on a grid, in which each processor is

responsible for simulating part of the grid. In this case the boundary between
the processor’s domains requires communication

PARALLEL COMMUNICATION

C++ Parallel Programming10

• Communication by memory sharing
• Thread A can write something to the shared memory space, after which thread

B can read it and react or vice versa
• Common in multithreading

• Communication by message passing
• Processes can directly send messages to each other with some protocol, or

through a master process which communicates with all processes (master/
slave configuration)

• When processors do not share any physical memory, this may be the only
way to communicate. For example the case in computing clusters

• Common in multiprocessing
•

PARALLEL COMMUNICATION

Zef Wolffs

PARALLEL
PROGRAMMING:
OPENMP

C++ Parallel Programming12

• OpenMP is a library for writing shared memory multithreading applications in
c, c++, and Fortran that comes shipped with most compilers by default

• OpenMP is mostly data-parallel, meaning that the same operations are
executed on different parts of some full dataset

• OpenMP is simple and at a high level of abstraction, making use of compiler
directives to achieve parallelism without requiring the user to write complex
parallel code
• #pragma omp construct [clause [clause]...]

OPENMP INTRODUCTION

C++ Parallel Programming13

• OpenMP uses the “fork-join model” for parallelisation
• Threads are forked and later joined upon compiler directives

OPENMP PROGRAMMING MODEL

C++ Parallel Programming14

• A parallel section is created as follows

• Threads are spawned as pragma compiler directive is crossed and get killed as
closing “}” is crossed

• Number of threads spawned is the number of processors by default, but can be
set with the OMP_NUM_THREADS environment variable

• Data is shared among threads by default

PARALLEL SECTIONS

C++ Parallel Programming15

• The most simple parallel construct is the parallel for loop, implemented as
follows

• Above can also be one-liner: pragma omp parallel for
• Splits loop iterations in threads
• Can be scheduled with the schedule() clause

• Can be set to dynamic or static
• Allows for setting a chunk size

PARALLEL FOR LOOP
Example 1 & 2

C++ Parallel Programming16

• Scope in the context of c++ generally refers to the section of code in which a
variable was initialised and can be used

• In OpenMP contexts scope refers to the set of threads that can see a variable

• By default variables defined before parallel section are shared between threads
• The same address space is used for that variable in each thread
• Need to be careful with race conditions for shared variables

• By default variables defined within parallel section are private to each thread
• Each thread has a unique address space for all of its private variables
• Private variables are not retained after the parallel section

VARIABLE SCOPE

C++ Parallel Programming17

• Outside of the default behaviour variables can also be set to shared or private
as follows
• Making variable x private

• Explicitly making variable x shared (should already be the case by default)

SHARED AND PRIVATE VARIABLES
Example 3

C++ Parallel Programming18

• OpenMP lets you synchronise threads to avoid race conditions
• barrier

• All threads wait here for each other before continuing

• critical
• The execution of the block of code encapsulated within the critical directive

is restricted to a single thread at a time

• Atomic
• Same as critical, but only works for simple memory updates, for example

adding two ints. It is faster though for those operations!

SYNCHRONISATION
Example 4

C++ Parallel Programming19

• OpenMP sections are blocks of code that can be executed in parallel

• By default, there is a barrier after the sections block such that threads wait for
all threads to finish before continuing
• You can disable this behaviour by adding a “nowait” clause after “sections”

SECTIONS
Example 5

