
1

© 2006 Wouter Verkerke, NIKHEF

The Standard Library – Using I/O streams

Standard Library –
Using I/O streams5

242

© 2006 Wouter Verkerke, NIKHEF

Introduction

• The Standard Library organizes all kinds of I/O operations
through a standard class ‘iostream’

• We’ve already used class iostream several types through the
objects cin and cout

• We will now take a better look at how streams work

#include <iostream>
using namespace std ;

int main() {
double x;

// Read x from standard input
cin >> x ;

// Write x to standard output
cout << “x = “ << x << endl ;

return 0 ;
}

243

2

© 2006 Wouter Verkerke, NIKHEF

A look behind the scenes

• I/O in C++ involves three distinct steps

Conversion from/to byte stream

Buffering of byte stream

Writing to/reading from I/O channel

Writing

Reading

int, float, char[], Employee

Physical or Logical Device

244

© 2006 Wouter Verkerke, NIKHEF

I/O classes and operators in C++

• Operators<<(), >>() do step 1, classes istream, ostream do step 2

Conversion from/to byte stream

Buffering of byte stream

Writing to/reading from I/O channel

int, float, char[], Employee

Physical or Logical Device

class istreamclass ostream

operator>>()operator<<()

245

3

© 2006 Wouter Verkerke, NIKHEF

Stream object in the Standard Library

• Stream classes in Standard Library

• Standard Library stream classes also implement all operators
to convert built-in types to byte streams
– Implemented as member operators of stream class
– Example: ostream::operator<<(int) ;

• Standard Library also provides three global stream objects for
‘standard I/O’
– istream object cin for ‘standard input’
– ostream objects cout,cerr for ‘standard output’,’standard error’

Input Output Both
Generic

(e.g.terminal) istream ostream iostream

File ifstream ofstream fstream

std::string istringstream ostringstream stringstream

Logical or
physical device

Direction of byte stream

<iostream>

<fstream>

<sstream>

Include file

246

© 2006 Wouter Verkerke, NIKHEF

Using streams without operators >>(),<<()

• Streams provide several basic functions to read and
write bytes
– Block operations

char buf[100] ;
int count(99) ;

// read ‘count’ bytes from input stream
cin.read(buf, count) ;

// write ‘count’ bytes to output stream
cout.write(buf, count) ;

247

4

© 2006 Wouter Verkerke, NIKHEF

Using streams without operators >>(),<<()

• Streams provide several basic functions to read and
write bytes
– Line oriented operations

// read line from stdin up to and including the newline char
cin.get(buf,100) ;

// read line from std up to newline char
cin.getline(buf,100) ;

// read line up to and including ‘:’
cin.get(buf,100,’:’) ;

// read single character
cin.get(c) ;

// write buffer up to terminating null byte
cout.write(buf,strlen(buf)) ;

// write single character
cout.put(c) ;

248

© 2006 Wouter Verkerke, NIKHEF

How is the stream doing?

• Member functions give insight into the state of the stream

• Example – reading lines from a file till the end of the file

Function Meaning
bool good() Next operation might succeed
bool eof() End of input seen
bool fail() Next operation will fail
bool bad() Stream is corrupted

ifstream ifs(“file.txt”) ;
char buf[100] ;

// Loop as long as stream is OK
while(!ifs.fail()) {

ifs.getline(buf,100) ;

// Stop here if we have reached end of file
if (ifs.eof()) break ;

cout << “just read ‘” << buf << “’” << endl ;
}

249

5

© 2006 Wouter Verkerke, NIKHEF

Some handy abbreviations

• Streams overload operator void*() to return !fail()
– Can shorten preceding example to

• Also return value of getline() provides similar
information
– Returns true if stream is good() and stream is not at eof() after

operation

while(ifs) { // expanded to while(ifs.operator void*())
ifs.getline(buf,100) ;
if (ifs.eof()) break ;
cout << “just read ‘” << buf << “’” << endl ;

}

while(ifs.getline(buf,100)) {
cout << “just read ‘” << buf << “’” << endl ;

}

250

© 2006 Wouter Verkerke, NIKHEF

Using stream operators

• The next step is to use the streaming operators instead
of the ‘raw’ IO routines
– Encapsulation, abstraction à let objects deal with their own

streaming

• Solution: use operator>>() instead of getline()

Bjarne 42
Leif 47
Thor 52

shoesize.txt

ifstream ifs(“shoesize.txt”) ;
string name ;
int size ;

while(ifs >> name >> size) {
cout << name << “ has shoe size “ << size << endl ;

}

251

6

© 2006 Wouter Verkerke, NIKHEF

Using stream operators

• Remember: syntax of stream operators is like that of
any other operator

• For all built-in types
– operator<<(ostream,TYPE) and operator>>(istream,TYPE) are

implemented as member functions of the streams

– Special case: operator<<(const char*) and operator>>(char*)
read and write char[] strings

string name ;
int size ;
cin >> name >> size ;

string name ;
int size ;
cin.operator>>(cin.operator>>(name), size) ;

252

© 2006 Wouter Verkerke, NIKHEF

Parsing input – some fine points

• Delimiters
– How does the text line

map on to the statement

– Because each operator>>() stops reading when it encounters ‘white
space’

– White space is ‘space’,’tab’,’vertical tab’,’form feed’ and ‘newline’
– White space between tokens is automatically ‘eaten’ by the stream

• Reading string tokens
– Be careful using char[] to read in strings: operator>>(const

char*) does not know your buffer size and it can overrun!

– Better to use class string

Bjarne Stroustrup 42

cin >> firstName >> lastName >> shoeSize ;

253

7

© 2006 Wouter Verkerke, NIKHEF

Formatting output of built-in types

• For built-in types streams have several functions that
control formatting
– Example: manipulating the base of integer output

– But it is often inconvenient to use this as calling formatting
function interrupt chained output commands

• To accomplish formatting more conveniently streams
have ‘manipulators’
– Manipulators are ‘pseudo-objects’ that change the state of the

stream on the fly:

cout.setf(ios_base::oct,ios_base::basefield) ; // set octal
cout << 1234 << endl ; // shows ‘02322’

cout.setf(ios_base::hex,ios_base::basefield) ; // set hex
cout << 1234 << endl ; // shows ‘0x4d2’

cout << oct << 1234 << endl << hex << 1234 << endl ;
// shows ‘2322’ ‘4d2’

254

© 2006 Wouter Verkerke, NIKHEF

Overview of manipulators

• So manipulators are the easiest way to modify the
formatting of built-in types

• What manipulators exist?
– Integer formatting

– Floating point formatting

Manipulator Stream type Description

dec iostream decimal base for integer

hex iostream hexadecimal base for integer

oct iostream octal base for integer

[no]showpos iostream show ‘+’ for positive integers

setbase(int n) iostream base n for integer

Manipulator Stream type Description

setprecision(int n) iostream show n places after decimal point

[no]showpoint iostream [don’t]show trailing decimal point

scientific iostream scientific format x.xxexx

uppercase iostream print 0XFF, nnExx

fixed iostream format xxxx.xx

255

8

© 2006 Wouter Verkerke, NIKHEF

Manipulators – continued

– Alignment & general formatting

– Miscellaneous

– Include <iomanip> for most manipulator definitions

Manipulator Stream type Description

left iostream align left

right iostream align right

internal iostream use internal alignment for each type

setw(int n) iostream next field width is n positions

setfill(char c) iostream set field fill character to c

Manipulator Stream type Description

endl ostream put ‘\n’ and flush

ends ostream put ‘\0’ and flush

flush ostream flush stream buffers

ws istream eat white space

setfill(char c) iostream set field fill character to c

256

© 2006 Wouter Verkerke, NIKHEF

Formatting output with manipulators

• Very clever, but how do manipulators work?
– A manipulator is a ‘pseudo-object’ that modifies the state of the

stream

– More precisely: a manipulator is a static member function of the
stream that takes a stream as argument, for example

– The manipulator applies its namesake modification to the stream
argument

– You put manipulators in your print statement because class ostream
also defines

This operator processes any function that takes a single ostream& as
argument and returns an ostream. The operator calls the function
with itself as argument, which then causes the wanted operation to be
executed on itself

class ostream {
static ostream& oct(ostream& os) {
os.setf(ios::oct,ios::basefield) ;

}
} ;

operator<<(ostream&(*f)(ostream&)) {
return f(*this) ;

}

257

9

© 2006 Wouter Verkerke, NIKHEF

Random access streams

• Streams tied to files and to strings also allow random
access
– Can move ‘current’ position for reading and writing to arbitrary

location in file or string

– Streams open for both input and output (fstream, stringstream)
have all four methods, where put() and get() pointer can be in
different positions

member function stream Description

streampos tellg() input return current location of ‘get()’ position

seekg(streampos) input set location of ‘get()’ position

streampos tellp() output return current location of ‘put()’ position

seekp(streampos) output set location of ‘put()’ position

258

© 2006 Wouter Verkerke, NIKHEF

Random access streams

• Example use of tell(),seek()
#include <fstream>

// Open file for reading and writing
fstream iofile(“file.dat”,ios::in|ios::out) ;

File Layout

FileH
eader

FileD
ataO

bj

get()
position

put()
position

259

10

© 2006 Wouter Verkerke, NIKHEF

Random access streams

• Example use of tell(),seek()
#include <fstream>

// Open file for reading and writing
fstream iofile(“file.dat”,ios::in|ios::out) ;

// Read in (fictitious) file header
FileHeader hdr ;
iofile >> hdr ;

File Layout

FileH
eader

FileD
ataO

bj

get()
position

put()
position

260

© 2006 Wouter Verkerke, NIKHEF

Random access streams

• Example use of tell(),seek()
#include <fstream>

// Open file for reading and writing
fstream iofile(“file.dat”,ios::in|ios::out) ;

// Read in (fictitious) file header
FileHeader hdr ;
iofile >> hdr ;

// Store current location of stream ‘get()’ pointer
streampos marker = ifs.tellg() ;

File Layout

FileH
eader

FileD
ataO

bj

get()
position

put()
position

261

11

© 2006 Wouter Verkerke, NIKHEF

Random access streams

• Example use of tell(),seek()
#include <fstream>

// Open file for reading and writing
fstream iofile(“file.dat”,ios::in|ios::out) ;

// Read in (fictitious) file header
FileHeader hdr ;
iofile >> hdr ;

// Store current location of stream ‘get()’ pointer
streampos marker = ifs.tellg() ;

// Read (fictitious) file data object
FileDataObj fdo ;
iofile >> fdo ;

File Layout

FileH
eader

FileD
ataO

bj

get()
position

put()
position

262

© 2006 Wouter Verkerke, NIKHEF

Random access streams

• Example use of tell(),seek()
#include <fstream>

// Open file for reading and writing
fstream iofile(“file.dat”,ios::in|ios::out) ;

// Read in (fictitious) file header
FileHeader hdr ;
iofile >> hdr ;

// Store current location of stream ‘get()’ pointer
streampos marker = ifs.tellg() ;

// Read (fictitious) file data object
FileDataObj fdo ;
iofile >> fdo ;

// modify file data object

// Move current’ location of stream
// ‘put ‘()’ pointer to marked position
ifs.tellp(marker) ;

File Layout

FileH
eader

get()
position

put()
position

FileD
ataO

bj

263

12

© 2006 Wouter Verkerke, NIKHEF

Random access streams

• Example use of tell(),seek()
#include <fstream>

// Open file for reading and writing
fstream iofile(“file.dat”,ios::in|ios::out) ;

// Read in (fictitious) file header
FileHeader hdr ;
iofile >> hdr ;

// Store current location of stream ‘get()’ pointer
streampos marker = ifs.tellg() ;

// Read (fictitious) file data object
FileDataObj fdo ;
iofile >> fdo ;

// modify file data object

// Move current’ location of stream
// ‘put ‘()’ pointer to marked position
ifs.tellp(marker) ;

// Write modified object over old location in file
iofile << fdo ;

File Layout

FileH
eader

get()
position

put()
position

FileD
ataO

bj

264

© 2006 Wouter Verkerke, NIKHEF

Streaming custom classes

• You can stream custom classes by defining your
matching operator<<(),operator>>() for those classes
– Standard Library stream classes implement operators <<, >> as

member functions for streaming of all basic types basic types
– This is not an option for you as you can’t modify the Standard

Library classes

– But in general, binary operators can be

1. member of class ostream(cout),
2. member of your class, or

3. be a global function.

– Option 1) already ruled out

– Option 2) doesn’t work because class being read/written needs to
be rightmost argument of operator, while as a member function it
is by construction the left argument of the operator

– Option 3) works: implement operator<< as global operator

265

13

© 2006 Wouter Verkerke, NIKHEF

Streaming custom classes

• For types that can be printed on a single line,
overloading the operator<<, operator>> is sensible
– Class string obvious example

• For classes that read/write multi-line output, consider a
separate function
– operator>>,<< syntax for such cases potentially confusing:

processing white space etc traditionally handled by stream not by
operator

– Example names: readFromStream(),writeToStream()

String s(“Hello”) ;
cout << string << “ World” ;

String s(“Hello”) ;
cout.operator<<(operator<<(cout,string),”World”) ;

266

© 2006 Wouter Verkerke, NIKHEF

Implementing your own <<,>> operators

• Important: operators <<,>> need to return a reference
to the input ostream, istream respectively
– Essential for ability to chain << operations

• Example implementation for class string

ostream& operator<<(ostream& os, const String& s) {
os << s._s ;
return os ;

}

istream& operator>>(istream& is, String& s) {
const int bufmax = 256 ;
static char buf[256] ;
is >> buf ;
s = buf ;
return is ;

}

Note: no const here
as String is modified

cin >> a >> b ;
cout << a << b << c ;

267

