
1

© 2006 Wouter Verkerke, NIKHEF

Object-based programming – Classes

Class
Basics 3

168

© 2006 Wouter Verkerke, NIKHEF

Destructors

• Classes that define constructors often allocate dynamic
memory or acquire resources
– Example: File class acquires open file handles, any other class

that allocates dynamic memory as working space

• C++ defines Destructor function for each class to be
called at end of lifetime of object
– Can be used to release memory, resources before death

• Class destructor syntax:

class ClassName {
…
~ClassName() ;
…
} ;

169

2

© 2006 Wouter Verkerke, NIKHEF

Example of destructor in File class

class File {

private:
int fh ;
void close() { ::close(fh) ; }

public:
File(const char* name) { fh = open(name) ; }
~File() { close() ; }
…

} ; File is automatically closed
when object is deleted

void readFromFile() {
File *f = new File(“theFile.txt”) ;
// read something from file
delete f ;

}

Opens file automatically

Closes file automatically

170

© 2006 Wouter Verkerke, NIKHEF

Automatic resource control

• Destructor calls can take care of automatic resource
control
– Example with dynamically allocated File object

– Example with automatic File object

– Great example of abstraction of
file concept and of encapsulation
of resource control

void readFromFile() {
File *f = new File(“theFile.txt”) ;
// read something from file
delete f ;

}

Opens file automatically

Closes file automatically

void readFromFile() {
File f(“theFile.txt”) ;
// read something from file

}

Opens file automatically

Deletion of automatic
variable f calls destructor
& closes file automatically

171

3

© 2006 Wouter Verkerke, NIKHEF

Intermezzo – Referring to yourself – this

• Q: Can you figure which instance you are representing in a
member function? A: Yes, using the special object this
– The ‘this’ keyword return a pointer to yourself inside a member

function

• How does it work?
– In case you called a1.initialize() from the main program,

this=&a1

– In case you called a2.initialize() then this=&a2 etc…

void Array::initialize() {
cout << “I am an array object, my pointer is “ << this << endl ;

}

172

© 2006 Wouter Verkerke, NIKHEF

Intermezzo – Referring to yourself – this

• You don’t need this very often.
– If you think you do, think hard if you can avoid it, you usually can

• Most common cases where you really need this are
– Identifying yourself to an outside function (see below)

– In assignment operations, to check that you’re not copying onto yourself
(e.g. a1=a1). We’ll come back to this later

• How to identify yourself to the outside world?
– Example: Member function of classA needs to call external function

externalFunc() that takes reference to classA

void externalFunction(ClassA& obj) {
…

}

void classA::memberFunc() {
if (certain_condition) {
externFunction(*this) ;

}
}

173

4

© 2006 Wouter Verkerke, NIKHEF

Copy constructor – a special constructor

• The copy constructor is the constructor with the
signature

• It is used to make a clone of your object

• It exists for all objects because the C++ compiler
provides a default implementation if you don’t supply
one
– The default copy constructor calls the copy constructor for all data

members. Basic type data members are simply copied

– The default implementation is not always right for your class, we’ll
return to this shortly

ClassA::ClassA(const ClassA&) ;

ClassA a ;
ClassA aclone(a) ; // aclone is an identical copy of a

174

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

• Use ‘ownership’ semantics in classes as well
– Keep track of who is responsible for resources allocated by your

object

– The constructor and destructor of a class allow you to
automatically manage your initialization/cleanup

– All private resources are always owned by the class so make sure
that the destructor always releases those

• Be careful what happens to ‘owned’ objects when you
make a copy of an object
– Remember: default copy constructor calls copy ctor on all class

data member and copies values of all basic types

– Pointers are basic types

– If an ‘owned’ pointer is copied by the copy constructor it is no
longer clear which instance owns the object à danger ahead!

175

5

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

• Example of default copy constructor wreaking havoc

class Array {
public:
Array(int size) {
initialize(size) ;

}
~Array() {
delete[] _x ;

}

private:
void initialize(int size) {
_size = size ;
_x = new double[size] ;

}
int _size ;
double* _x ;

};
Watch out! Pointer data member

176

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

• Example of default copy constructor wreaking havoc

void example {

Array a(10) ;
// ‘a’ Constructor allocates _x ;

if (some_condition) {
Array b(a) ;
// ‘b’ Copy Constructor does
// b._x = a._x ;

// b appears to be copy of a
}
// ‘b’ Destructor does:
// delete[] _b.x ;

// BUT _b.x == _a.x à Memory
// allocated by ‘Array a’ has
// been released by ~b() ;

<Do something with Array>
// You are dead!
}

Array a

_x

Array b

_x

double[]

Array a

_x û Problem is here:
b._x points to
same array

as a._x!

177

6

© 2006 Wouter Verkerke, NIKHEF

Taking good care of your property

• Example of default copy constructor wreaking havoc

class Array {
public:
Array(int size) {
initialize(size) ;

}
~Array() {
delete[] _x ;

}

private:
void initialize(int size) {
_size = size ;
_x = new double[size] ;

}
int _size ;
double* _x ;

};

void example {

Array a(10) ;
// ‘a’ Constructor allocates _x ;

if (some_condition)
Array b(a) ;
// ‘b’ Copy Constructor does
// b._x = a._x ;

// b appears to be copy of a
}
// ‘b’ Destructor does
// delete[] _b.x

// BUT _b.x == _a.x à Memory
// allocated by ‘Array a’ has
// been released by ~b() ;

<Do something with Array>
// You are dead!
}

Whenever your class owns dynamically allocated
memory or similar resources you need to implement

your own copy constructor!

178

© 2006 Wouter Verkerke, NIKHEF

Example of a custom copy constructor
class Array {
public:
Array(int size) {
initialize(size) ;

}

Array(const double* input, int size) {
initialize(size) ;
int i ;
for (i=0 ; i<size ; i++) _x[i] = input[i] ;

}

Array(const Array& other) {
initialize(other._size) ;
int i ;
for (i=0 ; i<_size ; i++) _x[i] = other._x[i] ;

}

private:
void initialize(int size) {
_size = size ;
_x = new double[size] ;

}
int _size ;
double* _x ;

};

Symbol _x refers
to data member
of this instance

Symbol other._x
refers to data
member of other
instance

Classes vs Instances
Here we are dealing
explicitly with one
class and two instances

179

7

© 2006 Wouter Verkerke, NIKHEF

Another solution to copy constructor problems

• You can disallow objects being copied by declaring their
copy constructor as ‘private’
– Use for classes that should not copied because they own non-

clonable resources or have a unique role

– Example: class File – logistically and resource-wise tied to a
single file so a clone of a File instance tied to the same file
makes no sense

class File {

private:
int fh ;
close() { ::close(fh) ; }
File(const File&) ; // disallow copying

public:
File(const char* name) { fh = open(name) ; }
~File() { close() ; }
…

} ;

180

© 2006 Wouter Verkerke, NIKHEF

Deleting default constructors in C++2011

• In C++2011 new language feature allows to delete
default implementations of constructors explicitly as
follows

class File {

private:
int fh ;
close() { ::close(fh) ; }

public:
File(const char* name) { fh = open(name) ; }

File(const File&) = delete ; // disallow copying

~File() { close() ; }
…

} ;

181

8

© 2006 Wouter Verkerke, NIKHEF

Ownership and defensive programming

• Coding mistakes happen, but by programming
defensively you will spot them easier
– Always initialize owned pointers to zero if you do not allocate your

resources immediately
– Always set pointers to zero after you delete the object they point

to

• By following these rules you ensure that you never have
‘dangling pointers’
– Dangling pointers = Pointers pointing to a piece memory that is

no longer allocated which may return random values
– Result – more predictable behavior

– Dereferencing a dangling pointer may
• Work just fine in case the already released memory has not been overwritten yet
• Return random results
• Cause your program to crash

– Dereferencing a zero pointer will always terminate your program
immediately in a clean and understandable way

182

© 2006 Wouter Verkerke, NIKHEF

Const and Objects

• ‘const’ is an important part of C++ interfaces.
– It promotes better modularity by enhancing ‘loose coupling’

• Reminder: const and function arguments

• Const rules simple to enforce for basic types: ‘=‘ changes
contents
– Compile can look for assignments to const reference and issue error
– What about classes? Member functions may change contents, difficult

to tell?
– How do we know? We tell the compiler which member functions

change the object!

void print(int value) ; // pass-by-value, value is copied

void print(int& value) ; // pass-by-reference,
print may change value

void print(const int& value); // pass-by-const-reference,
print may not change value

183

9

© 2006 Wouter Verkerke, NIKHEF

Const member functions

• By default all member functions of an object are
presumed to change an object
– Example

class Fifo {
…
void print() ;
…

};

int main() {
Fifo fifo ;
showTheFifo(fifo) ;

}

void showTheFifo(const Fifo& theFifo)
{

theFifo.print() ; // ERROR – print() is allowed
// to change the object

}

184

© 2006 Wouter Verkerke, NIKHEF

Const member functions

• Solution: declare print() to be a member function that
does not change the object

class Fifo {
…
void print() const ;
…

};

int main() {
Fifo fifo ;
showTheFifo(fifo) ;

}

void showTheFifo(const Fifo& theFifo)
{

theFifo.print() ; // OK print() does not change object
}

A member function is declared
const by putting ‘const’ behind
the function declaration

185

10

© 2006 Wouter Verkerke, NIKHEF

Const member function – the flip side

• The compiler will enforce that no statement inside a
const member function modifies the object

class Fifo {
…
void print() const ;
…
int size ;

};

void Fifo::print() const {
cout << size << endl ; // OK
size = 0 ; // ERROR const function is not

allows to modify data member
}

186

© 2006 Wouter Verkerke, NIKHEF

Const member functions – indecent exposure

• Const member functions are also enforced not to ‘leak’
non-const references or pointers that allows users to
change its content

class Fifo {
…
char buf[80] ;
…
char* buffer() const {

return buf ; // ERROR – Const function exposing
non-const pointer to data member

}
};

187

11

© 2006 Wouter Verkerke, NIKHEF

Const return values

• Lesson: Const member functions can only return const
references to data members
– Fix for example of preceding page

class Fifo {
…
char buf[80] ;
…
const char* buffer() const {

return buf ; // OK
}

};

This const says that this
member function will not
change the Fifo object

This const says the returned
pointer cannot be used to
modify what it points to

188

© 2006 Wouter Verkerke, NIKHEF

Why const is good

• Getting all your const declarations in your class correct
involves work! – Is it work the trouble?

• Yes! – Const is an important tool to promote encapsulation
– Classes that are ‘const-correct’ can be passed through const references to

functions and other objects and retain their full ‘read-only’ functionality

– Example

– Const correctness of class Fifo loosens coupling between main() and
showTheFifo() since main()’s author does not need to closely follow if
future version of showTheFifo() may have undesirable side effects on the
object

int main() {
Fifo fifo ;
showTheFifo(fifo) ;

}

void showTheFifo(const Fifo& theFifo)
{

theFifo.print() ;
}

189

12

© 2006 Wouter Verkerke, NIKHEF

Mutable data members

• Occasionally it can be useful to be able to modify
selected data members in a const object
– Most frequent application: a cached value for a time-consuming

operation

– Your way out: declare that data member ‘mutable’. In that case it
can be modified even if the object itself is const

– Use sparingly!

class FunctionCalculation {
…
mutable float cachedResult ;
…
float calculate() const {
// do calculation
cachedResult = <newValue> ; // OK because cachedResult

// is declared mutable
return cachedResult ;

}
};

190

© 2006 Wouter Verkerke, NIKHEF

Static data members

• OO programming minimizes use of global variables
because they are problematic
– Global variable cannot be encapsulated by nature

– Changes in global variables can have hard to understand side
effects

– Maintenance of programs with many global variables is hard

• C++ preferred alternative: static variables
– A static data member encapsulates a variable inside a class

• Optional ‘private’ declaration prevents non-class members to access variable

– A static data member is shared by all instances of a class

– Syntax

class ClassName {
…
static Type Name ;
…

};

Type ClassName::Name = value ;

Declaration

Definition and initialization

191

13

© 2006 Wouter Verkerke, NIKHEF

Static data members

• Don’t forget definition in addition to declaration!
– Declaration in class (in .hh) file. Definition in .cc file

• Example use case:
– class that keeps track of number of instances that exist of it

class Counter {
public:
Counter() { count++ ; }
~Counter() { count-- ; }

void print() {
cout << “there are “

<< count
<< “ instances of count”
<< endl ;

}
private:
static int count ;

} ;

int Counter::count = 0 ;

int main() {
Counter c1 ;
c1.Print() ;

if (true) {
Counter c2,c3,c4 ;
c1.Print() ;

}
c1.Print() ;
return 0 ;

}

there are 1 instances of count
there are 4 instances of count
there are 1 instances of count

192

© 2006 Wouter Verkerke, NIKHEF

Static function members

• Similar to static data member, static member functions
can be defined
– Syntax like regular function, with static keyword prefixed in

declaration only

– Static function can access static data members only since
function is not associated with particular instance of class

– Can call function without class instance

class ClassName {
…
static Type Name(Type arg,…) ;
…

};

type ClassName::Name(Type arg,…) {
// body goes here

}

ClassName::Name(arg,…) ;

193

14

© 2006 Wouter Verkerke, NIKHEF

Static member functions

• Example use case – modification of preceding example

class Counter {
public:
Counter() { count++ ; }
~Counter() { count-- ; }
static void print() {
cout << “there are “

<< count
<< “ instances of count”
<< endl ;

}
private:
static int count ;

} ;

int Counter::count = 0 ;

int main() {
Counter::print() ;

Counter c1 ;
Counter::print() ;

if (true) {
Counter c2,c3,c4 ;
Counter::print() ;

}
Counter::print() ;
return 0 ;

}

there are 0 instances of count
there are 1 instances of count
there are 4 instances of count
there are 1 instances of count

194

