
C++ course – Exercises Set 3

Wouter Verkerke (Jan 2023)

Exercise 3.1 – Make Stack a proper class

The goal of this exercise is to turn struct Stack into a proper class. In this
exercise you will learn about access control and using constructors and
destructors for automatic initialization and cleanup.

• Copy the input file Stack.cc to your working area. This file contains the

struct Stack implementation as shown in the course and will be your starting
point for this exercise.

• First reorganize the code to improve the modularity: split the code inside file
Stack.cc into three files: Stack.h, Stack.cc, main.cc:

o Move the struct definition to the header file, and change it from a
definition into a declaration. To do so, you should truncate the given
definition of the member functions into declarations of those functions.

It is however allowed to keep the full definitions of selected member
functions in the class declaration. This is mostly done for member
functions whose definition is trivial (e.g. one line of code).

In the given struct stack the only two non-trivial member functions are
push() and pop(): so these two should be truncated to a definition in
Stack.h.

The definition of pop() and push(), which are now eliminated from
stack.hh should be placed in file stack.cc. The definitions of these
functions in stack.cc while be outside the scope of ‘struct stack’
therefore the their names should be explicitly prefixed with ‘Stack::’ to
signal that these are not simple functions, but rather member functions
of struct Stack.

o Move the test program to file main.cc.

o Add proper #include statements in Stack.cc and main.cc. Why do you
need to include Stack.h in both these files?

o Compile your code and check that it still works.

• Now change struct Stack into class Stack.

Think about which data and function members should be public and which
should be private.

Implement access control in the class using the keywords public and private
according to your plan.

Reorganize the class declaration such that all public members are on the top
and all private members are on the bottom.

• Add a constructor that handles initialization and cleanup associated with class

Stack in these functions.

You can call the existing init() function from the constructor.
Should init() still be a public function once the constructor is added?

• Next, add a new member function that allows the user of class stack to look at
its contents.

Introduce a void inspect() const member function that prints the current
stack contents vertically in the correct orientation (i.e. the first line printed is the
top of the stack).

Print for each item both the position in the stack as well as its value.

• Finally modify your main() program so that it inspects the buffer after you’ve
pushed some content it into it, and again after you’ve popped all content from
it from it. Convince yourself that it makes sense.

• Change the main program to write 100 elements in the stack instead of 10.
Do you understand what happens?

Exercise 3.2 – Add auto grow feature to Stack

The goal for this exercise is to automatically grow the Stack internal buffer when it
runs out of allocated space: The fact that our Stack can be full is an artifact of the
implementation and has nothing to do with the abstract concept of a stack. You
will now change your code so that it never runs out of memory again (barring
physical memory limits)

• Replace the current fixed-size storage buffer of class Stack buffer with a

variable buffer size that is allocated dynamically through the new[] operator.

There are several steps to this process

1. Replace the array-type data member double s[LEN] with a pointer-type
data member with the same name.

The design goal of this step is to no longer store the buffer data of class
stack inside the memory of the class itself, but rather in a separate piece
of memory that can be dynamically allocated (and if needed be
replaced). Schematically:

Do you need to change any of the code in the member functions of
class Stack to reflect the change double s[LEN]’ à double *s ?

2. You need to explicitly manage the creation and deletion of the ‘external’
buffer memory in such a way that it is synchronous with the lifetime of
the Stack object itself: Add code to the constructor that allocates the
external buffer, and stores the address of the allocated member in the
pointer data member s. You can initially allocate the external buffers with
a fixed size of 80 in the constructor (you will change this later).

Introduce a destructor member function to class Stack. In this function
add code that deletes the memory that data member s points to.

3. Given that every object of class stack can now (potentially) have a
different buffer size, you will need to change you code to keep track of
the amount of buffer memory that was allocated: add a new data
member to class stack that memorizes how much memory was
allocated (which is different from the amount of memory actually used,
which is already tracked), and change the code that checks if the stack
is full to use this information of stored size of the buffer, instead of
assumed fixed length.

• Run the main() program to verify that the new Stack class works.

• Next, augment the functionality of class stack: Let the user of class Stack to
specify what the size of the buffer should be. To do so, modify the constructor
of Stack so that it takes an optional integer argument with the desired initial
stack size

• Finally, we aim at the ultimate design goal: a buffer that can be resized on the

fly, so that it can never run out of storage.

1. Implement a new member function grow(int delta) function whose

functionality will be to increase the existing buffer size by an amount
delta. The idea is that we can use this function later to enlarge our
buffer on the fly if we are about to run out of space.

2. The function grow() should allocate a new buffer using the new[]
operator that is larger than the existing buffer by an amount delta.

3. The function should copy the content of the existing buffer to the new

(larger) buffer

4. Then, it should delete the old buffer, and change pointer-typed data

member s to point to the new buffer instead of the old buffer.

• Convince yourself that the grow() as designed above does not introduce a
memory leak. Who deletes the memory allocated inside grow function?

• Now you are ready to modify the push() method so that it will exploit grow() to
expand the buffer size when the buffer is full.

Insert code at the beginning of push that checks if the buffer is full, and if so,
calls the grow() method to expand the buffer by some amount delta.

Think about what is a reasonable value for the growth increment delta.

Explain what the advantages and disadvantages of a small and a large
increment size are.

• Run the main program again and verify that the buffer is expanded on the fly to
accommodate large input by calling the inspect() function you wrote earlier.

• Is it still necessary for the user of a stack to specify an initial size?
Apart from necessity, why would it be it useful for the user to be able to specify
an initial size?

Exercise 3.3 – Add auto grow feature to Stack (optional)

The goal of this exercise is to make Stack a properly behaved class under all
circumstances: A user of Stack should be able to make a copy of it without
unintended side effects.

Verifying the behavior

• Go to the main() function of your test program and modify it such that it fills
the stack with 10 elements.

• Next, after the Stack s has been filled, make a copy of it using the copy
constructor which you call sclone.

The intended effect of copying a Stack is that both the Stack structure and its
contents are copied and two completely independent instances of class Stack
exist: s and sclone. This means that you should be able to manipulate one of them
without affecting the other.

• As a first step towards verifying this behavior, check that s and sclone have
identical contents (use the inspect() function). Does it look OK?

• Now we will explicitly test the independence of s and sclone: Empty s by
calling pop() repeatedly. Once s is empty, inspect() both s and sclone
again. Does it look OK?

• As a final test, refill s again with 5 elements of value 100*i instead of value
i*i. Inspect both s and sclone again. Do you understand what happens?

Fixing the behavior

• Declare and implement a copy constructor for class Stack. In the copy

constructor, take care to explicitly copy the value of all data members, except
for the buffer pointer s. Why should buffer s be treated differently in the copy
constructor?

• Allocate a sufficiently large buffer s in the copy constructor and copy the
contents of the other Stack into the new buffer. Then run the main()
program again with all the tests that you inserted for this exercise. Does it
behave correctly now?

From a ‘clean programming’ perspective it is desirable to avoid duplication of code
as much as possible.

• Do you see duplication of code between your copy constructor and other
member functions of Stack? Rewrite the copy constructor so that it uses
the init() function.

