
1

© 2006 Wouter Verkerke, NIKHEF

Object-based programming – Classes

Class
Basics 3

129

© 2006 Wouter Verkerke, NIKHEF

Overview of this section

• Contents of this chapter

– structs and classes - Grouping data and functions together

– public vs private – Improving encapsulation through hiding of
internal details

– constructors and destructors – Improving encapsulation
through self-initialization and self-cleanup

– more on const – Improving modularity and encapsulation
through const declarations

130

2

© 2006 Wouter Verkerke, NIKHEF

Encapsulation

• OO languages like C++ enable you to create your own
data types. This is important because
– New data types make program easier to visualize and implement

new designs

– User-defined data types are reusable

– You may modify and enhance new data types as programs evolve
and specifications change

– New data types let you create objects with simple declarations

• Example

Window w ; // Window object
Database ood ; // Database object
Device d ; // Device object

131

© 2006 Wouter Verkerke, NIKHEF

Evolving code design through use of C++ classes

• Illustration of utility of C++ classes – Designing and
building a FIFO queue
– FIFO = ‘First In First Out’

• Graphical illustration of a FIFO queue

‘A’ ‘Q’ ‘W’‘Z’
write read

‘S’ ‘L’

132

3

© 2006 Wouter Verkerke, NIKHEF

Evolving code design through use of C++ classes

• First step in design is to write down the interface
– How will ‘external’ code interact with our FIFO code?

• List the essential interface tasks
1. Create and initialize a FIFO

2. Write a character in a FIFO

3. Read a character from a FIFO

– Support tasks
1. How many characters are currently in the FIFO
2. Is a FIFO empty

3. Is a FIFO full

‘A’ ‘Q’ ‘W’‘Z’
write read

‘S’ ‘L’

133

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ class FIFO – interface

// Interface
void init() ;
void write(char c) ;
char read() ;

int nitems() ;
bool full() ;
bool empty() ;

• List of interface tasks
1. Create and initialize a FIFO

2. Write a character in a FIFO

3. Read a character from a FIFO

• List desired support tasks
1. How many characters are

currently in the FIFO

2. Is a FIFO empty

3. Is a FIFO full

‘A’ ‘Q’ ‘W’‘Z’
write read

‘S’ ‘L’

134

4

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

• Implement FIFO with array of elements
– Use index integers to keep track of front and rear, size of queue

// Implementation
char s[LEN] ;
int rear ;
int front ;
int count ;

‘A’

‘Z’

‘Q’

‘W’

135

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

• Implement FIFO with array of elements
– Use index integers to keep track of front and rear, size of queue

– Indices revolve: if they reach end of array, they go back to 0

‘A’

‘Z’

‘Q’

‘W’

// Implementation
void init() { front = rear = count = 0 ; }

void write(char c) { count++ ;
if(rear==LEN) rear=0 ;
s[rear++] = c ; }

char read() { count-- ;
if (front==LEN) front=0 ;
return s[front++] ; }

int nitems() { return count ; }
bool full() { return (count==LEN) ; }
bool empty() { return (count==0) ; }

136

5

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

• Animation of FIFO write operation

‘A’

‘Z’

‘Q’

‘W’

void write(char c) { count++ ;
if(rear==LEN) rear=0 ;
s[rear++] = c ; }

front=1

rear=4

count=4

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=4

count=5

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=5

137

© 2006 Wouter Verkerke, NIKHEF

Designing the C++ struct FIFO – implementation

• Animation of FIFO read operation

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=5

‘X’

‘A’

‘Z’

‘Q’

‘W’ front=1

rear=5

count=4

‘X’

‘A’

‘Z’

‘Q’

‘W’

front=2

rear=5

count=4

char read() { count-- ;
if (front==LEN) front=0 ;
return s[front++] ; }

‘X’

138

6

© 2006 Wouter Verkerke, NIKHEF

Putting the FIFO together – the struct concept

• The finishing touch: putting it all together in a struct
const int LEN = 80 ; // default fifo length

struct Fifo {
// Implementation
char s[LEN] ;
int front ;
int rear ;
int count ;

// Interface
void init() { front = rear = count = 0 ; }
int nitems() { return count ; }
bool full() { return (count==LEN) ; }
bool empty() { return (count==0) ; }
void write(char c) { count++ ;

if(rear==LEN) rear=0 ;
s[rear++] = c ; }

char read() { count-- ;
if (front==LEN) front=0 ;
return s[front++] ; }

} ;

139

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the ‘struct’ construct

• Grouping of data members facilitates storage allocation
– Single statement allocates all data members

• A struct organizes access to data members and
functions through a common symbolic name

// Allocate struct data type ‘Fifo’
Fifo f ;

// Access function through name ‘f’
f.init() ;

// Access data member through name ‘f’
cout << f.count << endl ;

140

7

Type names vs. instance names

• Note important distinction between
type name and instance name

• Compare to basic types

© 2006 Wouter Verkerke, NIKHEF

// Allocate struct data type ‘Fifo’
Fifo f ;

// Allocate struct data type ‘Fifo’
Fifo f2 ;

Type name (Fifo)

Instance name (f,f2)

int i ;
int i2 ;

141

Type names vs. instance names

• Instance name (f1,f2) maps to address in memory

• Type name (Fifo) controls size of memory allocation,
interpretation of memory in allocated block

© 2006 Wouter Verkerke, NIKHEF

Memory layoutC++ symbol name space

Fifo f1

Fifo f2

char name[256]

char s[80]

int front
int rear
int count

142

8

Member access operator

• The dot (.) and arrow (->) operators implements
access to members of composite object like struct’s
– Syntax: TypeName.MemberName

© 2006 Wouter Verkerke, NIKHEF

// Allocate struct
// data type ‘Fifo’
Fifo f ;

// Access data member
// through name ‘f’
cout << f.count << endl ;

// Access data member
// through pointer to f
Fifo* pf = &f ;
cout << (*pf).count << endl ;
cout << pf->count << endl ;

Memory layoutC++ symbol
name space

Fifo f1

f1.count

char s[80]

int front
int rear
int count

143

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the ‘struct’ construct

• Concept of ‘member functions’ automatically ties
manipulator functions to their data
– No need to pass data member operated on to interface function

// Solution without
// member functions

struct fifo {
int front, rear, count ;

} ;

char read_fifo(fifo& f) {
f.count-- ;
…

}

fifo f1,f2 ;
read_fifo(f1) ;
read_fifo(f2) ;

// Solution with
// member functions

struct fifo {
int front, rear, count ;
char read() {
count-- ;
…

}
} ;

fifo f1,f2 ;
f1.read() ; // does f1.count--
f2.read() ; // does f2.count--

144

9

© 2006 Wouter Verkerke, NIKHEF

Using the FIFO example code

• Example code using the FIFO struct

const char* data = “data bytes” ;
int i, nc = strlen(data) ;

Fifo f ;
f.init() ; // initialize FIFO

// Write chars into fifo
const char* p = data ;
for (i=0 ; i<nc && !f.full() ; i++) {
f.write(*p++) ;

}

// Count chars in fifo
cout << f.nitems() << “ characters in fifo” << endl ;

// Read chars back from fifo
for (i=0 ; i<nc && !f.empty() ; i++) {
cout << f.read() << endl ;

}

10 chars
in fifo
d
a
t
a

b
y
t
e
s

Program Output

145

© 2006 Wouter Verkerke, NIKHEF

Characteristics of the FIFO code

• Grouping data, function members into a struct promotes
encapsulation
– All data members needed for fifo operation allocated in a single

statement
– All data objects, functions needed for fifo operation have

implementation contained within the namespace of the FIFO
object

– Interface functions associated with struct allow implementation
of a controlled interface functionality of FIFO

• For example can check in read(), write() if FIFO is full or empty and
take appropriate action depending on status

• Problems with current implementation
– User needs to explicitly initialize fifo prior to use

– User needs to check explicitly if fifo is not full/empty when
writing/reading

– Data objects used in implementation are visible to user and
subject to external modification/corruption

146

10

© 2006 Wouter Verkerke, NIKHEF

Controlled interface

• Improving encapsulation
– We improve encapsulation of the FIFO implementation by

restricting access to the member functions and data members
that are needed for the implementation

• Objective – a controlled interface
– With a controlled interface, i.e. designated member functions that

perform operations on the FIFO, we can catch error conditions on
the fly and validate offered input before processing it

– With a controlled interface there is no ‘back door’ to the data
members that implement the fifo thus guaranteeing that no
corruption through external sources can take place

• NB: This also improves performance since you can afford to be less paranoid.

147

© 2006 Wouter Verkerke, NIKHEF

Private and public

• C++ access control keyword: ‘public’ and ‘private’

• Public data
– Access is unrestricted. Situation identical to no access control declaration

• Private data
– Data objects and member functions in the private section can only be

accessed by member functions of the struct (which themselves can be
either private or public)

struct Name {
private:

… members … // Implementation

public:

… members … // Interface

} ;

148

11

© 2006 Wouter Verkerke, NIKHEF

Redesign of Fifo class with access restrictions

const int LEN = 80 ; // default fifo length

struct Fifo {
private: // Implementation
char s[LEN] ;
int front ;
int rear ;
int count ;

public: // Interface
void init() { front = rear = count = 0 ; }
int nitems() { return count ; }
bool full() { return (count==LEN) ; }
bool empty() { return (count==0) ; }
void write(char c) { count++ ;

if(rear==LEN) rear=0 ;
s[rear++] = c ; }

char read() { count-- ;
if (front==LEN) front=0 ;
return s[front++] ; }

} ;

149

© 2006 Wouter Verkerke, NIKHEF

Using the redesigned FIFO struct

• Effects of access control in improved fifo struct

Fifo f ;
f.init() ; // initialize FIFO

f.front = 5 ; // COMPILER ERROR – not allowed
cout << f.count << endl ; // COMPILER ERROR – not allowed

cout << f.nitems() << endl ; // OK – through
// designated interface

front is an implementation detail that’s not part of the
abstract FIFO concept. Hiding this detail promotes encapsulation
as we are now able to change the implementation later
with the certainty that we will not break existing code

‘A’ ‘Q’ ‘W’‘Z’
write read

‘S’ ‘L’

150

12

© 2006 Wouter Verkerke, NIKHEF

Class – a better struct

• In addition to ‘struct’ C++ also defines ‘class’ as a
method to group data and functions
– In structs members are by default public,

In classes member functions are by default private

– Classes have several additional features that we’ll cover shortly

struct Name {
private:

… members …

public:

… members …

} ;

class Name {

… members …

public:

… members …

} ;

Equivalent

151

© 2006 Wouter Verkerke, NIKHEF

Classes and namespaces

• Classes (and structs) also define their own namespace
– Allows to separate interface and implementation even further by

separating declaration and definition of member functions

class Fifo {
public: // Interface
char read() {
count-- ;
if (front==len) front=0 ;
return s[front++] ;
}

} ;

class Fifo {
public: // Interface
char read() ;
} ;

#include “fifo.hh”
char Fifo::read() {
count-- ;
if (front==len) front=0 ;
return s[front++] ;

}

Declaration and definition Declaration only

Definition

Use of scope operator ::
to specify read() function
of Fifo class when outside
class declaration

152

13

© 2006 Wouter Verkerke, NIKHEF

Classes and namespaces

• Scope resolution operator can also be used in class
member function to resolve ambiguities

class Fifo {
public: // Interface
char read() {
…
std::read() ;
…
}

} ; Use scope operator to specify that you want
to call the read() function in the std namespace
rather than yourself

153

© 2006 Wouter Verkerke, NIKHEF

Classes and files

• Class declarations and definitions have a natural
separation into separate files
– A header file with the class declaration

To be included by everybody that uses the class

– A definition file with definition
that is only offered once
to the compiler

– Advantage: You do not need to
recompile code using
class fifo if only implementation
(file fifo.cc) changes

#ifndef FIFO_HH
#define FIFO_HH
class Fifo {
public: // Interface
char read() ;
} ;
#endif

#include “fifo.hh”
char Fifo::read() {
count-- ;
if (front==len) front=0 ;
return s[front++] ;

}

fifo.hh

fifo.cc

154

14

© 2006 Wouter Verkerke, NIKHEF

Constructors

• Abstraction of FIFO data type can be further enhanced
by letting it take care of its own initialization
– User should not need to know if and how initialization should

occur

– Self-initialization makes objects easier to use and gives less
chances for user mistakes

• C++ approach to self-initialization – the Constructor
member function
– Syntax: member function with function name identical to class

name

class ClassName {
…
ClassName() ;
…
} ;

155

© 2006 Wouter Verkerke, NIKHEF

Adding a Constructor to the FIFO example

• Improved FIFO example

• Simplified use of FIFO

class Fifo {
public:
void init() ;
…

class Fifo {
public:
Fifo() { init() ; }

private:
void init() ;
…

Fifo f ; // creates raw FIFO
f.init() ; // initialize FIFO

Fifo f ; // creates initialized FIFO

156

15

© 2006 Wouter Verkerke, NIKHEF

Default constructors vs general constructors

• The FIFO code is an example of a default constructor
– A default constructor by definition takes no arguments

• Sometimes an object requires user input to properly
initialize itself
– Example: A class that represents an open file – Needs file name

– Use ‘regular constructor’ syntax

– Supply constructor arguments at construction

class ClassName {
…
ClassName(argument1,argument2,…argumentN) ;
…
} ;

ClassName obj(arg1,…,argN) ;
ClassName* ptr = new ClassName(Arg1,…,ArgN) ;

157

© 2006 Wouter Verkerke, NIKHEF

Constructor example – a File class

class File {

private:
int fh ;

public:
File(const char* name) {

fh = open(name) ;
}

void read(char* p, int n) { ::read(fh,p,n) ; }
void write(char* p, int n) { ::write(fh,p,n) ; }
void close() { ::close(fh) ; }

} ;

File* f1 = new File(“dbase”) ;
File f2(“records”) ; Supply constructor arguments here

158

16

© 2006 Wouter Verkerke, NIKHEF

Multiple constructors

• You can define multiple constructors with different
signatures
– C++ function overloading concept applies to class member

functions as well, including the constructor function

class File {

private:
int fh ;

public:
File() {

fh = open(“Default.txt”) ;
}
File(const char* name) {

fh = open(name) ;
}

read(char* p, int n) { ::read(p,n) ; }
write(char* p, int n) { ::write(p,n) ; }
close() { ::close(fh) ; }

} ;

159

© 2006 Wouter Verkerke, NIKHEF

Default constructor and default arguments

• Default values for function arguments can be applied to
all class member functions, including the constructor
– If any constructor can be invoked with no arguments (i.e. it has

default values for all arguments) it is also the default constructor

class File {

private:
int fh ;

public:
File(const char* name=“Default.txt”) {

fh = open(name) ;
}

read(char* p, int n) { ::read(p,n) ; }
write(char* p, int n) { ::write(p,n) ; }
close() { ::close(fh) ; }

} ;

160

17

© 2006 Wouter Verkerke, NIKHEF

Default constructors and arrays

• Array allocation of objects does not allow for
specification of constructor arguments

• You can only define arrays of classes that have a
default constructor
– Be sure to define one if it is logically allowed
– Workaround for arrays of objects that need constructor

arguments: allocate array of pointers ;

– Don’t forget to delete elements in addition to array afterwards!

Fifo* fifoArray = new Fifo[100] ;

Fifo** fifoPtrArray = new (Fifo*)[100] ;
int i ;
for (i=0 ; i<100 ; i++) {

fifoPtrArray[i] = new Fifo(arguments…) ;
}

161

Data members vs function arguments

• Note that you can access two types of variables
in class member functions, including the constructor
– Data members – Will live beyond function call,

but not beyond object lifetime

– Function arguments – Will only for duration of function call

© 2006 Wouter Verkerke, NIKHEF

class Fifo {
public:

Fifo(int size) { _size = size ;}

private:
int _size ;
…

If you need to preserve information
given as function argument to constructor,
you must copy it to a data member

162

18

© 2006 Wouter Verkerke, NIKHEF

Classes contained in classes – member initialization

• If classes have other classes w/o default constructor as
data member you need to initialize ‘inner class’ in
constructor of ‘outer class’

class File {
public:
File(const char* name) ;
…

} ;

class Database {
public:
Database(const char* fileName) ;

private:
File f ;

} ;

Database::Database(const char* fileName) : f(fileName) {
// Database constructor

}

163

© 2006 Wouter Verkerke, NIKHEF

Class member initialization

• General constructor syntax with member initialization

– Note that insofar order matters, data members are initialized in
the order they are declared in the class, not in the order they
are listed in the initialization list in the constructor

– Also for basic types (and any class with default ctor) the member
initialization form can be used

– Performance tip: for classes constructor initialization tends to be
faster than assignment initialization (more on this later)

ClassName::ClassName(args) :
member1(args),
member2(args), …
memberN(args) {
// constructor body

}

File(const char* name) {
fh = open(name) ;

}

File(const char* name) :
fh(open(name)) {
}

Initialization through assignment Initialization through constructor

164

19

Class member initialization in C++2011

• In C++2011 a new intuitive form of data member
initialization is supported: assignment in the class
declaration

– Conceptually C++ compiler will translates assignments to
corresponding member initializations ‘front(0) etc’

• If both assignment and ctor member initializer are
specified, latter takes precedence
– I.e. Assignment can be used as the ‘default’ initializer than can be

overridden my member init in ctor

© 2006 Wouter Verkerke, NIKHEF

class Fifo {
private: // Implementation
char s[LEN] ;
int front = 0;
int rear = 0 ;
int count = 0;

public: // Interface
…

} ;

165

© 2006 Wouter Verkerke, NIKHEF

Constructor delegation in C++2011

• New feature of C++2011 is that constructor delegation is
explicitly supported – preferred solution

class Array {
public:
Array(int size) {
_size = size ;
_x = new double[size] ;

}

Array(const double* input, int size) : Array(size) {
int i ;
for (i=0 ; i<size ; i++) _x[i] = input[i] ;

}

private:
int _size ;
double* _x ;

};

Allowed in C++2011!!!
(New feature)

166

20

© 2006 Wouter Verkerke, NIKHEF

Common initialization in multiple constructors

• The correct solution in C++2003 is to make a private
initializer that is called from all relevant constructors

class Array {
public:
Array(int size) {
initialize(size) ;

}

Array(const double* input, int size) {
initialize(size) ;
int i ;
for (i=0 ; i<size ; i++) _x[i] = input[i] ;

}

private:
void initialize(int size) {
_size = size ;
_x = new double[size] ;

}
int _size ;
double* _x ;

};

167

