
C++ course – Exercises Set 2

Wouter Verkerke (Jan 2023)

Exercise 2.1 – Sorting numbers and strings

The goal of this exercise is to learn how to use pointers and references with
functions

You will write a program that sorts an array of 10 random integers using the
bubble sort algorithm:

Part 1 – Sorting arrays of integers

• Write a small main program that allocates an array of 10 integers and fill them

with random values.

o NB: You can manually code a series of 10 ‘random’ numbers in the
initializer of the array. You do not need to develop code that calls a
random number generator and fills the array.

• Encapsulate the above bubble sort algorithm in a separate sort() function
that takes the array of integers, and the length of that array as input arguments.

• Code the missing part of the above bubble sort algorithm, as explained in the
comment in red.

Do not include this code inside the sort() function, instead code it in a
separate order() function, that you call from within sort().

Your order() function should take two function arguments, each of the type
‘reference to integer’

o NB: the order() function you’re asked to develop here has a different
functionality than the swap() routine described in the course material of
Module 2 (which swaps the input arguments unconditionally)

for (i=0; i<n-1; i++) {
 for (j=0; j<n-1-i; j++) {
 // if A[j+1] is greater than A[j], swap A[j] and A[j+1]
 }
}

• Add code to your main program that prints out the array after sorting to verify
that all works correctly.

• Make a copy of your source code, which has a different name. In this copy, re-
implement, the order() function using pointers as function arguments, rather
than references. Adjust the code inside the sort() function accordingly.

Do you like the pointer or the reference version better?

Part 2 – Sorting arrays of strings

• Make another copy of the program. Change the code in it such so that it

allocates an array of then const char* elements. Initialize the pointers with 10
text literals (e.g. “blah”). Why do you need the elements of the array to be
const char* rather than char* here?

• Adjust the function arguments of the sort() and order() functions so that

they can work with arrays of const char*, instead of arrays of int.

(*) Think about what the C++ data type of the arguments of order() function
should be to make it completely analogous to the integer version? The easiest
way to figure it out is to think of ‘const char*’ as a fundamental type just link
int and to proceed with a straightforward substitution of one with the other.

• Adjust the code of the sort() function. A particular point of attention is how to

do the equivalent of ‘a>b’ for values of type const char*. What can’t you just
compare the pointer values to compare the strings?

Instead, you can use the strcmp(a,b) function declared in <string.h> from
the C++ standard library. This function returns an integer value greater or
smaller than zero, depending on the lexical order of the two character arrays a
and b. What can’t you just compare the pointer values to compare the strings?

• As a last step, reimplement the order() function to be able to order the two

elements of type const char*. Do you still need the reference in the function
argument declaration? (Hint: think again about the point made in (*)).

Exercise 2.2 – Function overloading

The goal of this exercise is to understand the basics of function overloading.

• Implement the following overloaded min() functions

int min(int a,int b) ;
double min(double a,double b) ;
int min(int arr[], int len) ; // returns minimum of array

• Write a small program that tests your three implementations with matching
examples.

• Now try call min() passing a double and an int as argument.
Explain why this does not work.

• What possible solution can be implemented to make the above call work?
Implement this solution.

