

The model: A theory of dark pions

- Hidden Valley (HV) models
- Dark QCD-like force
- Arbitrary number of flavours and colours within approximate confinement N < $4N_d$
- \leftarrow
- Lightest dark hadron: "dark pion"
 Long-lived-particle (LLP)

Freek Driessen 03-08-2023

 $\widehat{\boldsymbol{\pi}} \longrightarrow \mathbf{K}_{s}^{\circ} + \mathbf{K}^{-} + \mathbf{\pi}^{-}$ $\mathbf{K}_{s}^{\circ} \longrightarrow \mathbf{\pi}^{+} + \mathbf{\pi}^{-}$

A sensitivity study for dark pions at the LHCb

Freek Driessen 03-08-2023

The model: A theory of dark pions Higgs bosons in Run 2

Simulation studies generator level & complete detector

Multivariate Analysis (MVA) with gradient boosted decision tree (BDT)

Estimated significance

Results and conclusions

03-08-2023

The model: A theory of dark pions

- Hidden Valley (HV) models
- Dark QCD-like force
- Arbitrary number of flavours and colours within approximate confinement N < $4N_d$
- Lightest dark hadron: "dark pion"
 Long-Lived-Particle (LLP)
 0.100
 Investigated lifetime range: 5 to 100 ps
 - Higgs Portal 6.9% total BR $\widehat{\pi} \rightarrow K^{\circ}_{,}K^{+-}\pi^{+-}$ $K^{\circ}_{,} \rightarrow \pi^{+}\pi^{-}$ $K^{\circ}_{,} \rightarrow \pi^{+}\pi^{-}$ $\widehat{K}^{\circ}_{,} \rightarrow 0.010$
 - Mass region: 1.2 < M < 3 GeV

Freek Driessen 03-08-2023

Higgs bosons in Run 2

- Higgs boson 13 TeV cross section: 56.9 pb = 56.9 \cdot 10⁻¹² b
- LHCb Run 2 luminosity: 5.7 fb-1 = $5.7 \cdot 1015 b^{-1}$

- CMS 2022: BR (h → invisible) < 18%
- Best case scenario dark Higgs bosons run 2: $324330 \cdot 0.18 = 58379$

03-08-2023

Freek Driessen

Simulation

- Generator level 5, 10 & 100 ps: 10K events
- Complete detector 10 ps: \approx 1M events
- 200M background events each, bb and $c\overline{c}$
- Three analysis categories for long and downstream tracks: LLLL, LLDD, DDDD
- LLLL: Long track reconstruction of $\hat{\pi}$ and K_{s}°
- LLDD: Long track reconstruction of $\hat{\pi}$ **Downstream track reconstruction of K**[°]
- DDDD: Downstream track reconstruction of $\hat{\pi}$ and K_{s}°

Freek Driessen 03-08-2023

Background simulation

Generator level studies Acceptance effiencies

- For long tracks:
 - Distance from beamline: < 30 mm
 - z-coordinate cut: -100 < z < 600 for VELO

Generator level cuts

- Pseudorapidity $2 < \eta < 5$
- Total momentum > 2 GeV
- Distance from beamline: < 30 mm for long tracks
- z-coordinate: -100 < z < 600 for long tracks, 600 < z < 2200 for downstream tracks

Generator level studies Acceptance effiencies

Best performing categories

- 5 ps: LLDD (1.91%)
 - 618 reconstructible decays in Run 2
- 10 ps: LLDD (1.73%)
 - 554 reconstructible decays in Run 2
- 100 ps: DDDD (1.02%)
 - 327 reconstructible decays in Run 2

Generator level studies Acceptance effiencies

- In 5 and 10 ps, despite much lower \mathbf{K}_{i}° acceptance downstream
 - Daughter pions have similar acceptance, highest in downstream
- In 100 ps, similar acceptance K
 - Daughter pions have higher acceptance in downstream track, larger difference

Generator level studies Run 2 predictions

S	10 ps	100 ps		
	204	47		
	554	204		
	23	327		

Complete detector simulation Stripping selection

- Recall: 1M signal events
- 200M background events
- Run 2 LHCb stripping selection for LLP's
- Despite higher cross section of cc,
 - acceptance efficiency is lower ~
- Recall generator level acceptance efficiencies:
 - LLLL: 0.63%
 - LLDD: 1.73%
 - DDDD: 0.07%
- $\mathbf{c} \mathbf{c}$ background events acceptance efficiency

MVA: Gradient BDT

- Hyperparameters:
 - Learning rate: 0.15
 - Number of estimators: 100
 - Maximum depth: 4
 - Subsample: 0.5

- Simple BDT
- Train features:
 - Transverse momentum ; for LLP, Ks, KM, PiP

 - End vertex χ2 ; for LLP

• Training weak learners based on prediction of negative gradient of loss function, for minimization of loss function

• PID variables ProbNNk and ProbNNpi ; for KM, PiP

Impact parameter x2 w.r.t own primary vertex (pv) ; for LLP, Ks, KM, PiP

• Flight distance χ2 w.r.t origin vertex ; for LLP & Ks

• Vertex isolation: smallest $\Delta \chi 2$ when adding one track ; for LLP

• Isolation variable 0.40nc_mult (neutral particles in 0.40 mrad cone); for LLP

• Isolation variable 0.40nc_sPT (sum transverse momentum neutral particles in cone); for LLP

MVA: Gradient BDT

MVA: Number of events

- bb LHCb acceptance cross section at 13 TeV: 144 μb
- $c\overline{c}$ LHCb acceptance cross section at 13 TeV: 2369 μb
- bb events: 8.21 · 10¹¹
- CC events: 1.35 · 10¹³
- Recall 58379 dark Higgs bosons

Sign bb СŌ

- Recall the much broader mass window in DDDD
 - Because of this, computed for both small 60 MeV (2470 < M < 2530) window and complete range 1.2 < M < 3 GeV
 - Future research needs to fit width per category
- Extrapolation to Run 2 in mass ranges, using estimated number of events. Remarkably accurate background extrapolation for LLDD (150k from data vs. 170k extrapolated)

	Category		
Event type	LLLL	LLDD	DDDD
Run 2 signal events in mass window	1.67	3.03	1.10
Run 2 signal events in total mass range	2.80	5.14	7.52
Run 2 $b\overline{b}$ background events in mass window	965260.80	91108.80	160056
Run 2 $c\bar{c}$ background events in mass window	1377336.60	81019.80	1134277.20

• Recall acceptance efficiencies

	LLLL	LLDD	DDDD
a	0.048%	0.089%	0.14%
	0.0066%	0.00057%	0.0014%
	0.00088%	0.0008%	0.00078%

- Need more data for more natural distribution
- High signal retainment (> 90%)
- Recall from generator level:
 - 10 ps estimated Run 2 DDDD reconstructible decays: 23
 - 100ps estimated Run 2 DDDD reconstructible decays: 327

Signal events cut efficiency Background events cut efficience Signal events left in mass winde Signal events left in total mass Estimated significance, with sig Estimated significance, with sig

MVA: Background suppression Estimated significance

	Category		
	\mathbf{LLLL}	LLDD	DDDD
	91.9%	99.1%	100%
cy	1.33%	2.44%	4.24%
OW	1.53	3.00	1.10
range	2.57	5.10	7.52
gnal events in mass window	0.009	0.046	0.005
gnal events in total mass range	0.015	0.079	0.032

MVA: Improvements

- Improvement opportunities:
 - LHCb Run 3 trigger: factor 10
 - Kinematic cuts with Armenteros-Podolanski plot: factor 10 Symmetric momentum distribution of equal mass pions; plot shows transverse momentum w.r.t mother vs. longitudinal momentum assymetry
 - Other: Flight distance in mm ; additional isolation variables

Conclusions

- Cautious optimism
- Run 3 LHCb
- BDT improvement

Decay vertex position of simulated $\hat{\pi}$ and K_S^0 in the VELO and TT region. 5 ps lifetime

