Measurement of the angular decay rate of $B^0 \rightarrow K^{*0}ee$ using full available LHCb data samples

Maurice Geijsen Master thesis defense

Supervisors Mara Senghi Soares Alice Biolchini

Nikhef, Amsterdam 13 July 2023

GRavitation AstroParticle Physics Amsterdam

Overview

- Introduction
- Analysis Overview
- Boosted Decision Trees (BDT)
- Semileptonic Background Studies
- Preliminary Mass Fit
- Angular Fit
- Outlook

Standard Model (SM)

- SM is an excellent theory for describing particles and their interactions
- Still, it leaves a lot of open questions
- Testing SM predictions to look for New Physics (NP)

Standard Model (SM)

- SM is an excellent theory for describing particles and their interactions
- Still, it leaves a lot of open questions
- Testing SM predictions to look for New Physics (NP)

4

Testing the SM using *B* meson decays

- Decays of *B* mesons are great channels to probe the SM for New Physics (NP)
- We look at $B^0 \rightarrow K^{*0} ee$
- This is a very rare decay! BR of ~ 1.03 x10⁻⁶!

Testing the SM using *B* meson decays

- Decays of *B* mesons are great channels to probe the SM for New Physics (NP)
- We look at $B^0 \rightarrow K^{*0} ee$
- This is a very rare decay! BR of ~ 1.03 x10⁻⁶!

- Compare the SM predictions with the measurements
- Any discrepancies could be a sign of NP

6

Large Hadron Collider (LHC)

- 27 km circular particle accelerator at CERN
- Proton-proton collisions
- 4 beam collision points
 - ATLAS
 - ALICE
 - CMS
 - LHCb
- 2 data taking periods (Runs 1 & 2)
 - Run 3 ongoing

Large Hadron Collider beauty (LHCb)

- Beauty (bottom) quark dedicated experiment
- Composed of several subdetectors

Large Hadron Collider beauty (LHCb)

Nikl

het

$B^0 \rightarrow K^{*0}ee$ topology

- K^{*0} is not stable and decays immediately to K and π
 Oregination We're looking for B⁰ → K⁺π⁻e⁺e⁻
- q² is the di-electron invariant mass
- Data split up into different q² regions

Goal of the analysis

• The decay is described by $\theta_{\ell}, \theta_{K}, \phi$ and q^{2}

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K \\ +\frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_\ell \\ -F_L\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi \\ +S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + S_5\sin2\theta_K\sin\theta_\ell\cos\phi \\ +\frac{4}{3}A_{FB}\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\phi \\ +S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \end{bmatrix}$$

Goal of the analysis

• The decay is described by $\theta_{\ell}, \theta_{K}, \phi$ and q^{2}

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1 - F_L)\sin^2\theta_K + F_L\cos^2\theta_K & \mathrm{dist} \\ +\frac{1}{4}(1 - F_L)\sin^2\theta_K\cos 2\theta_\ell & \mathrm{dist} \\ -F_L\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi \\ +S_4\sin 2\theta_K\sin 2\theta_\ell\cos\phi + S_5\sin 2\theta_K\sin\theta_\ell\cos\phi \\ +\frac{4}{3}A_{FB}\sin^2\theta_K\cos\theta_\ell + S_7\sin 2\theta_K\sin\theta_\ell\sin\phi \\ +S_8\sin 2\theta_K\sin 2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_\ell\sin^2\phi_\ell}$$

- Goal of the analysis: Measure the coefficients describing the angular distribution
 - Compare with SM predictions
 - Perform an angular fit
 - Do this for each q^2 bin

Analysis strategy

- Run 1 and Run 2 LHCb data
 - Structured in nTuples
- Selection of data very important
 - Separate signal from backgrounds
- Analysis performed in bins of q²
 - Low q^2 : [0.1, 1] GeV²/c⁴
 - Center q²: [1, 7] GeV²/c⁴
- Make use of Monte Carlo (MC) simulations

Workflow and production of nTuples

- Workflow
 - Perform corrections to MC
 - Selection of events
- Has some bottlenecks
 - Improve them!
 - \circ $\;$ Fix issues that come up
- Create nTuples!

Boosted Decision Trees (BDT)

Silvia Ferreres Solé

- Machine Learning tool for separating signal from background
- Identifies patterns in features to predict signal
- Assigns a score to each event based on their 'signal-likeness'

BDT Goals

- Goal is to reduce background while retaining signal
- Train the BDT using training samples
 - MC signal
 - Lower and upper sidebands of data

BDT performance and overtraining

- BDT's performance is based on:
 - the features
 - the hyperparameters
 - the training samples

BDT performance and overtraining

- BDT's performance is based on:
 - the features
 - the hyperparameters
 - the training samples
- Particularly, we want to avoid overtraining

BDT performance and overtraining

- BDT's performance is based on:
 - the features
 - the hyperparameters
 - the training samples
- Particularly, we want to avoid overtraining

• Tuning the hyperparameters, target the BDT's complexity

Old BDT starting point

Old BDT starting point

Train vs Test using XGB S (train) Old BDT as starting point $S \chi^2/ndof = 1.08$ $B \chi^2/ndof = 1.65$ $AUC \ score = 0.9683$ B (train) 104 XGBoost from scikit library S (test) B (test) Arbitrary units We spot overtraining! 10³ 10² Feature importance B VI VTXISODCHI2MASSONETRACK B DTF PV chi2 0 531.0 487.0 n estimators 800 **B VI VTXISODCHI2ONETRACK** = 10¹ 472.0 Kstar PT 3 max depth = Kstar IPCHI2 OWNPV 2 L Min IPCHI2 OWNPV 447 0 sigma *learning_rate* = 0.06 373.0 L Max PT Jpsi ENDVERTEX CHI2 340 subsample = 0.5 B IPCHI2 OWNPV 338.0 -2**'IBDT VTXISOBDTHARDFIRSTVALUE** 335. *min child weight =* 1 335.0 B eta 0.2 0.8 0.0 0.6 1.0 L Max IPCHI2 OWNPV 318.0 0.4 Kstar ENDVERTEX CHI2 309.0 **BDT Output** 0 100 200 300 400 500 600 700 F score hef Nik 21

Optimizing BDT

- We tune hyperparameters
- Choose those that target the BDT's complexity
- Each combination of values gets assigned an AUC score

n_estimators max_depth learning_rate subsample min_child_weight

False Positive Rate (1-Specificity)

Optimizing BDT

- We tune hyperparameters
- Choose those that target the BDT's complexity
- Each combination of values gets assigned an AUC score
- Use GridSearchCV function to find the best combination given a range
 - Find the highest scoring combination!

AUC

True Positive Rate (Sensitivity)

False Positive Rate (1-Specificity)

Optimized BDT in central q²

Nikhef 24

BDT for low q^2

- Now we want the same, but for the low q² bin
- But, before starting from scratch we check how the central q² BDT performs here

BDT for low q^2

- Now we want the same, but for the low q² bin
- But, before starting from scratch we check how the central q² BDT performs here

Retention	central q^2	low q^2
Signal	$0.883 {\pm} 0.002$	0.880 ± 0.002
Combinatorial	$0.0212 {\pm} 0.002$	0.0212 ± 0.002
Partially Reconstructed	$0.702 {\pm} 0.012$	0.712 ± 0.012

We can work with this!

B mass peak pre and post BDT

hef

Nił

27

Troubles with reconstruction of electrons

- Electron Bremsstrahlung 10⁸ higher than muons!
- Worse mass resolution
- Worse reconstruction efficiency

Semileptonic background studies

- Semileptonic decays is one of the most common *b* quark decays
- It is a large background in our data
- We used to have a cut in place to deal with this, however ...

Semileptonic background studies

Old cut

- Semileptonic decays is one of the most common *b* quark decays
- It is a large background in our data

 $K\pi$ mass

1800

1900

2000 mass (MeV/c^2)

We used to have a cut in place to deal with this, however ...

number of events 120000

10000

5000

1600

1700

New cut for (some) semileptonic decays in central q²

- New cut using brem 0 events and probability of electron being ...
 - Pion
 - Kaon
 - Proton

• More on this later...

Effects of new cut

Preliminary Mass Fit

- Making use of Likelihood function
- Using Minuit to minimize this to find best pdf

$$\mathcal{L}(\vec{x}_i, \vec{\theta}) = \prod_i f(\vec{\theta} | \vec{x}_i)$$
$$-\ln \mathcal{L}(\vec{x}_i, \vec{\theta}) = -\sum_i \ln f(\vec{\theta} | \vec{x}_i)$$

Preliminary Mass Fit

- Data signal
- Combinatorial
- Partially Reconstructed

MC Signal Fits

MC Generator Level Decay Angles

MC Angular Fit w/ Acceptance

Comparison effects of cut in ctl on angular coefficients

Nikhef 38

Outlook for semileptonic backgrounds

- Target SL decays below $m(K^+e^-) < 2000 \text{ MeV}^2/c^4$
- Peak in high $\cos \theta \ell$
- Use the χ^2 on the electron vertex

$$\begin{split} B^{0} &\to (D^{-} \to (K^{*} \to K^{+}\pi^{-})\pi^{-})e^{+}\nu_{e} \\ B^{0} &\to (D^{*} \to (\bar{D} \to K^{+}\pi^{-})\pi^{-})e^{+}\nu_{e} \\ B^{0} &\to (D^{-} \to (K^{*} \to K^{+}\pi^{-})e^{-}\bar{\nu}_{e})e^{+}\nu_{e} \end{split}$$

0.50

0.75

1 00

Conclusion

- Provided contributions to the collaboration
 - Optimizing steps in workflow
 - Creation of nTuples
- Improved the BDT by optimizing hyperparameters
 - Both central and low q2
- Replaced a cut on semileptonic decays
 - To be used as a starting point
- Provided a preliminary mass and angular fit
 - Mass fit on data
 - Angular fit on MC

Thank you for your attention!

41

Thank you for your attention!

Nikhef

BACK UP SLIDES

Decay angles definitions

 θ_{I} > between the direction of the e⁺and the direction opposite to that of the B⁰ in the rest frame of the dimuon system θ_{K} > between the direction of the K⁺ and the direction of the B⁰ in the rest frame of the K^{*0}

 $\phi \rightarrow$ between the plane defined by the electrons pair and the plane defined by the kaon and pion in the B⁰ rest frame

- The operator C7 describes the radiative decay $b \rightarrow s\gamma$
- The operators C9 and C10 both describe the b → qℓℓ transition. C9 corresponds to the vector current, and C10 to the axial current
- Finally, C10 describes the $B \rightarrow \ell + \ell$ decays (in the SM)

Semileptonic backgrounds

Outlook cuts after BDT

Hyperparameter definitions

- n_estimator: amount of trees or rounds in the model
- max_depth: maximum depth of a tree
- learning_rate: step size shrinkage
- subsample: ratio of training instance, selection of the training data
- min_child_weight: minimum sum of instance weight needed in a child

Feature differences Data vs MC

LHCb THCp

49

hef

Nik

Correlation Matrix

													1.00
Kstar_PT -		-0.03	-0.16	0.035	-0.013	0.085	0.074	-0.0059	0.1	-0.16	-0.023		
L_Max_PT -	-0.03	1	-0.17	0.022	0.25	0.054	0.0074	0.002	-0.032	0.015	0.0012		0.75
B_eta -	-0.16	-0.17	1	-0.029	-0.044	-0.089	-0.068	0.096	-0.0094	0.00053	-0.018	-	0.50
_VTXISODCHI2ONETRACK -	0.035	0.022	-0.029	1	0.025	0.095	0.069	0.0018	-0.0059	-0.02	0.035		0.25
SODCHI2MASSONETRACK -	-0.013	0.25	-0.044	0.025	1	-0.09	-0.041	-0.023	-0.028	0.041	0.00031		
Kstar_IPCHI2_OWNPV -	0.085	0.054	-0.089	0.095	-0.09	1	0.26	0.04	-0.013	-0.074	-0.021	-	0.00
L_Min_IPCHI2_OWNPV -	0.074	0.0074	-0.068	0.069	-0.041	0.26	1	0.052	-0.033	-0.0037	0.025	-	-0.25
B_IPCHI2_OWNPV -	-0.0059	0.002	0.096	0.0018	-0.023	0.04	0.052	1	0.015	-0.021	0.01	-	-0.50
Jpsi_ENDVERTEX_CHI2 -	0.1	-0.032	-0.0094	-0.0059	-0.028	-0.013	-0.033	0.015	1	-0.054	-0.011		
Kstar_ENDVERTEX_CHI2 -	-0.16	0.015	0.00053	-0.02	0.041	-0.074	-0.0037	-0.021	-0.054	1	-0.0015	-	-0.75
B_DTF_PV_chi2_0 -	-0.023	0.0012	-0.018	0.035	0.00031	-0.021	0.025	0.01	-0.011	-0.0015	1		-1.00
	Kstar_PT -	L_Max_PT -	B_eta -	XISODCHIZONETRACK -	OCHIZMASSONETRACK -	Kstar_IPCHI2_OWNPV -	L_Min_IPCHI2_OWNPV -	B_IPCHI2_OWNPV -	ipsi_ENDVERTEX_CHI2 -	star_ENDVERTEX_CHI2 -	B_DTF_PV_chi2_0 -		

hef Nik

50

BDT train vs test low q2

LHCb THCp

Nikhef 51

Combinatorial and Partially Reconstructed Fits

BDT training samples

Cuts:

Signal: 4900 < B_M < 5600 q2 [1, 7] or [0.1, 7] for central or low Backgr: 4600 < B_M < 4900 and B_M > 5600

Sample	Size [1, 7]	$[0.1,\ 7]$
Signal (MC)	56618	78171
Background (Data)	22722	25686

GenericPresel & GenericPresel_Additional & TighterKst0Presel & VetoesPresel & TriggerPresel & CloseVeto & MeerkatPresel_Tight & PIDPresel

B0_BKGCAT = 10, 50 or 60

BDT efficiency sample sizes

Sample	Size [1, 7]	Size $[0.1, 1]$
Signal (MC) total	19171	38742
Signal (MC) Brem 0	5357	10699
Signal (MC) Brem 1	9582	19480
Signal (MC) Brem 2	4232	85663
Combinatorial (Data)	5459	5178
Part Reco (MC) total	1505	1424
Part Reco (MC) Brem 0	314	275
Part Reco (MC) Brem 1	817	793
Part Reco (MC) Brem 2	374	356

