From flat spacetime to Einstein equation: Hands-on session

Part I: Flat space to Einstein's equations

(1.2) When going along the radius of the circle, φ is constant, so $d \varphi=0$, hence $d s^{2}=R^{2} d \theta^{2}$. Therefore the radius is

$$
\begin{equation*}
\rho=\int_{0}^{\alpha} \sqrt{R^{2} d \theta^{2}}=R \int_{0}^{\alpha} d \theta=R \alpha . \tag{1}
\end{equation*}
$$

When going along the circle itself one instead has $\theta=\alpha$, so this time $d \theta=0$, and $d s^{2}=$ $R^{2} \sinh ^{2} \alpha d \varphi^{2}$. The circumference of the circle is then

$$
\begin{equation*}
C=\int_{0}^{2 \pi} \sqrt{R^{2} \sinh ^{2} \alpha d \varphi^{2}} d \varphi=R \sinh \alpha \int_{0}^{2 \pi} d \varphi=2 \pi R \sinh \alpha . \tag{2}
\end{equation*}
$$

Hence the ratio of circumference to radius is

$$
\begin{equation*}
\frac{C}{\rho}=2 \pi \frac{\sinh \alpha}{\alpha} . \tag{3}
\end{equation*}
$$

Using

$$
\begin{equation*}
\sinh (x)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots, \tag{4}
\end{equation*}
$$

clearly $\sinh \alpha / \alpha>1$, hence $C / \rho>2 \pi$. For $\alpha \ll 1$ one has $\sinh \alpha \simeq \alpha$ and $C / \rho \simeq 2 \pi$.

Part II: Einstein's equations to wave equation

(2.4) One must have

$$
\begin{equation*}
\partial^{\mu} \bar{h}_{\mu \nu}^{\prime}=0=\partial^{\mu} \bar{h}_{\mu \nu}-\partial^{\mu}\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}-\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}\right) \tag{5}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\partial^{\mu}\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}-\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}\right)=\partial^{\mu} \bar{h}_{\mu \nu} . \tag{6}
\end{equation*}
$$

For the left hand side one has

$$
\begin{align*}
\partial^{\mu}\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}-\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}\right) & \\
& =\square \xi_{\nu}+\partial_{\nu} \partial^{\mu} \xi_{\mu}-\partial_{\nu} \partial_{\rho} \xi^{\rho} \\
& =\square \xi_{\nu}+\partial_{\nu} \partial^{\mu} \xi_{\mu}-\partial_{\nu} \partial_{\mu} \xi^{\mu} \\
& =\square \xi_{\nu}, \tag{7}
\end{align*}
$$

where in the last term of the next-to-last line we renamed the dummy index ρ to μ. Thus, the required gauge transformation must satisfy

$$
\begin{equation*}
\square \xi_{\nu}=\partial^{\mu} \bar{h}_{\mu \nu} \tag{8}
\end{equation*}
$$

This equation always has a solution, which we can explicitly construct using the Green's function of the d'Alembertian, $\mathcal{G}(t, \mathbf{x})$. Specifically,

$$
\begin{equation*}
\xi_{\nu}(t, \mathbf{x})=\int d t^{\prime} d \mathbf{x}^{\prime} \partial^{\mu} \bar{h}_{\mu \nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right) \mathcal{G}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) \tag{9}
\end{equation*}
$$

This is indeed the solution, because

$$
\begin{align*}
\square \xi_{\nu}(t, \mathbf{x}) & =\square \int d t^{\prime} d \mathbf{x}^{\prime} \partial^{\mu} \bar{h}_{\mu \nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right) \mathcal{G}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) \\
& =\int d t^{\prime} d \mathbf{x}^{\prime} \partial^{\mu} \bar{h}_{\mu \nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right) \square \mathcal{G}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) \\
& =\int d t^{\prime} d \mathbf{x}^{\prime} \partial^{\mu} \bar{h}_{\mu \nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right) \delta\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) \\
& =\partial^{\mu} \bar{h}_{\mu \nu}(t, \mathbf{x}), \tag{10}
\end{align*}
$$

where in the last line we have used the defining equation of the Green's function.
(2.5) Consider a wavefront at a give time t defined by

$$
\begin{equation*}
\omega t-\mathbf{k} \cdot \mathbf{x}=K \tag{11}
\end{equation*}
$$

for some constant K. Let \mathbf{y} be another point on the same wavefront, so also

$$
\begin{equation*}
\omega t-\mathbf{k} \cdot \mathbf{y}=K \tag{12}
\end{equation*}
$$

Writing $\Delta \mathbf{x}=\mathbf{y}-\mathbf{x}$, one finds

$$
\begin{equation*}
\omega t-\mathbf{k} \cdot \mathbf{x}-\mathbf{k} \cdot \Delta \mathbf{x}=K \tag{13}
\end{equation*}
$$

Subtracting Eq. (11),

$$
\begin{equation*}
\mathbf{k} \cdot \Delta \mathrm{x}=0 . \tag{14}
\end{equation*}
$$

Hence any two points on a wavefront are connected by a vector that is perpendicular to \mathbf{k}.
Now let time evolve. If at time t a point on the wavefront was at \mathbf{x}, then at a later time $t^{\prime}=t+\Delta t$ it will have been moved along \mathbf{k}, so $\mathbf{x}^{\prime}=\mathbf{x}+a \mathbf{k}$ for some a. Plugging this into Eq. (11) we get

$$
\begin{equation*}
\omega(t+\Delta t)-\mathbf{k} \cdot \mathbf{x}-a \mathbf{k} \cdot \mathbf{k}=K \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\omega \Delta t=a|\mathbf{k}|^{2} \tag{16}
\end{equation*}
$$

Since $\omega=c|\mathbf{k}|$,

$$
\begin{equation*}
c \Delta t=a|\mathbf{k}| . \tag{17}
\end{equation*}
$$

Hence, the wavefront traverses the distance $\Delta D=a|\mathbf{k}|$ in a time Δt such that $\Delta D / \Delta t=c$.

