From flat spacetime to Einstein equation: Hands-on session

Part I: Flat space to Einstein's equations

(1.1) In the metric $ds^2 = g_{\mu\nu}x^{\mu}x^{\nu}$, once can also use the polar coordinates $(x'^1, x'^2) = (r, \theta)$: Show that: $ds^2 = dr^2 + r^2 d\theta^2 = g'_{\mu\nu} dx'^{\mu} dx'^{\nu}$ where $g' = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$

(1.2) Consider beings living in a 2-dimensional surface with metric

$$ds^2 = R^2 d\theta^2 + R^2 \sinh^2 \theta \, d\varphi^2,\tag{1}$$

where R is a constant. (Note the hyperbolic sine in the metric, which makes it different from the metric on a spherical surface.) On this surface, consider a circle determined by $\theta = \alpha$, where α is some fixed number. What is the radius ρ of the circle, as determined by how far the beings have to walk in the direction of constant φ from $\theta = 0$ to $\theta = \alpha$? What is the circumference C of the circle, as determined by how far the beings have to walk around the circle to get back to their starting point? Show that $C/\rho > 2\pi$, but if α is small, one has $C/\rho \simeq 2\pi$.

Use

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots, \tag{2}$$

(1.3) Coordinate transformations change the metric

$$g'_{\alpha\beta} = \frac{\partial x^{\mu}}{\partial x'^{\alpha}} \frac{\partial x^{\nu}}{\partial x'^{\beta}} g_{\mu\nu} \tag{3}$$

Explicitly show when going from $(x^1, x^2) = (x, y)$ to $(x'^1, x'^2) = (r, \theta)$, this changes the metric from $g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ to $g' = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$

(1.4) Defining tangent vector to a curve $x^{\mu}(\tau)$ as $V^{\mu} = \frac{dx^{\mu}}{d\tau}$, show that: $V_{\mu}V^{\mu} = -c^2$, where c is the velocity of light.

Part II: Einstein's equations to wave equation

(2.1) Show that to leading order in $h_{\mu\nu}$, the inverse of the metric $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ is given by

$$g^{\mu\nu} \equiv \eta^{\mu\nu} - \eta^{\mu\alpha}\eta^{\nu\beta}h_{\alpha\beta},\tag{4}$$

i.e. show that

$$g^{\mu\rho}g_{\rho\nu} = \delta^{\mu}_{\ \nu} + \mathcal{O}(h^2) \tag{5}$$

with $g^{\mu\nu}$ defined as above.

(2.2) Also show that to leading order, raising indices on $h_{\mu\nu}$ using $g^{\mu\nu}$ is the same as raising indices using $\eta^{\mu\nu}$; for example,

$$h^{\mu}_{\ \nu} = g^{\mu\rho} h_{\rho\nu} = \eta^{\mu\rho} h_{\rho\nu} + \mathcal{O}(h^2).$$
 (6)

(2.3) Under small coordinate transformations, show:

$$h'_{\mu\nu} = h_{\mu\nu} - (\partial_{\nu}\xi_{\mu} + \partial_{\mu}\xi_{\nu}) \tag{7}$$

We defined

$$\bar{h}_{\mu\nu} \equiv h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h,\tag{8}$$

with $h = h^{\alpha}_{\alpha}$. Show that under small coordinate transformations, or gauge transformations, $\bar{h}_{\mu\nu}$ transforms as

$$\bar{h}'_{\mu\nu} = \bar{h}_{\mu\nu} - (\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} - \eta_{\mu\nu}\partial_{\rho}\xi^{\rho}). \tag{9}$$

(2.4) It was stated in class that whatever $\bar{h}_{\mu\nu}$ is, there will always be a gauge transformation such that in the new coordinate system the Lorenz gauge holds, i.e.

$$\partial^{\mu} \bar{h}'_{\mu\nu} = 0 \tag{10}$$

Prove that such a gauge transformation indeed always exists.

Hint: You can show that

$$\partial^{\mu}(\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} - \eta_{\mu\nu}\partial_{\rho}\xi^{\rho}) = \Box\xi_{\nu},\tag{11}$$

so that the required gauge transformation is a solution to the equation

$$\Box \xi_{\nu} = \partial^{\mu} \bar{h}_{\mu\nu}. \tag{12}$$

From this, obtain an explicit expression for ξ_{ν} in terms of the Green's function $\mathcal{G}(t, \mathbf{x})$ of the d'Alembertian, and explain why that expression is indeed the solution to the above equation.

(2.5) As we have seen, the Lorentz gauge reduces the Einstein equations to a particularly simple form. In vacuum $(T_{\mu\nu} = 0)$ one has $\Box \bar{h}_{\mu\nu} = 0$, or

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \nabla^2\right)\bar{h}_{\mu\nu} = 0. \tag{13}$$

Consider a plane gravitational wave of the form

$$\bar{h}_{\mu\nu} = A_{\mu\nu} \cos(\omega t - \mathbf{k} \cdot \mathbf{x}) \tag{14}$$

for some constant tensor $A_{\mu\nu}$. We have seen that this is a solution to (13) on condition that $\omega = c|\mathbf{k}|$. Show that the wavefronts are perpendicular to \mathbf{k} , and that $\omega = c|\mathbf{k}|$ implies that the wave propagates at the speed of light.