From flat spacetime to Einstein equation: Hands-on session

Part I: Flat space to Einstein's equations

(1.1) In the metric $d s^{2}=g_{\mu \nu} x^{\mu} x^{\nu}$, once can also use the polar coordinates $\left(x^{\prime 1}, x^{\prime 2}\right)=(r, \theta)$: Show that: $d s^{2}=d r^{2}+r^{2} d \theta^{2}=g_{\mu \nu}^{\prime} d x^{\prime \mu} d x^{\prime \nu}$ where $g^{\prime}=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$

(1.2) Consider beings living in a 2-dimensional surface with metric

$$
\begin{equation*}
d s^{2}=R^{2} d \theta^{2}+R^{2} \sinh ^{2} \theta d \varphi^{2}, \tag{1}
\end{equation*}
$$

where R is a constant. (Note the hyperbolic sine in the metric, which makes it different from the metric on a spherical surface.) On this surface, consider a circle determined by $\theta=\alpha$, where α is some fixed number. What is the radius ρ of the circle, as determined by how far the beings have to walk in the direction of constant φ from $\theta=0$ to $\theta=\alpha$? What is the circumference C of the circle, as determined by how far the beings have to walk around the circle to get back to their starting point? Show that $C / \rho>2 \pi$, but if α is small, one has $C / \rho \simeq 2 \pi$.

Use

$$
\begin{equation*}
\sinh (x)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots, \tag{2}
\end{equation*}
$$

(1.3) Coordinate transformations change the metric

$$
\begin{equation*}
g_{\alpha \beta}^{\prime}=\frac{\partial x^{\mu}}{\partial x^{\prime \alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime \beta}} g_{\mu \nu} \tag{3}
\end{equation*}
$$

Explicitly show when going from $\left(x^{1}, x^{2}\right)=(x, y)$ to $\left(x^{\prime 1}, x^{\prime 2}\right)=(r, \theta)$, this changes the metric from $g=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ to $g^{\prime}=\left(\begin{array}{cc}1 & 0 \\ 0 & r^{2}\end{array}\right)$
(1.4) Defining tangent vector to a curve $x^{\mu}(\tau)$ as $V^{\mu}=\frac{d x^{\mu}}{d \tau}$, show that: $V_{\mu} V^{\mu}=-c^{2}$, where c is the velocity of light.

Part II: Einstein's equations to wave equation

(2.1) Show that to leading order in $h_{\mu \nu}$, the inverse of the metric $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$ is given by

$$
\begin{equation*}
g^{\mu \nu} \equiv \eta^{\mu \nu}-\eta^{\mu \alpha} \eta^{\nu \beta} h_{\alpha \beta}, \tag{4}
\end{equation*}
$$

i.e. show that

$$
\begin{equation*}
g^{\mu \rho} g_{\rho \nu}=\delta^{\mu}{ }_{\nu}+\mathcal{O}\left(h^{2}\right) \tag{5}
\end{equation*}
$$

with $g^{\mu \nu}$ defined as above.
(2.2) Also show that to leading order, raising indices on $h_{\mu \nu}$ using $g^{\mu \nu}$ is the same as raising indices using $\eta^{\mu \nu}$; for example,

$$
\begin{equation*}
h^{\mu}{ }_{\nu}=g^{\mu \rho} h_{\rho \nu}=\eta^{\mu \rho} h_{\rho \nu}+\mathcal{O}\left(h^{2}\right) . \tag{6}
\end{equation*}
$$

(2.3) Under small coordinate transformations, show:

$$
\begin{equation*}
h_{\mu \nu}^{\prime}=h_{\mu \nu}-\left(\partial_{\nu} \xi_{\mu}+\partial_{\mu} \xi_{\nu}\right) \tag{7}
\end{equation*}
$$

We defined

$$
\begin{equation*}
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h, \tag{8}
\end{equation*}
$$

with $h=h^{\alpha}{ }_{\alpha}$. Show that under small coordinate transformations, or gauge transformations, $\bar{h}_{\mu \nu}$ transforms as

$$
\begin{equation*}
\bar{h}_{\mu \nu}^{\prime}=\bar{h}_{\mu \nu}-\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}-\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}\right) \tag{9}
\end{equation*}
$$

(2.4) It was stated in class that whatever $\bar{h}_{\mu \nu}$ is, there will always be a gauge transformation such that in the new coordinate system the Lorenz gauge holds, i.e.

$$
\begin{equation*}
\partial^{\mu} \bar{h}_{\mu \nu}^{\prime}=0 \tag{10}
\end{equation*}
$$

Prove that such a gauge transformation indeed always exists.
Hint: You can show that

$$
\begin{equation*}
\partial^{\mu}\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}-\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}\right)=\square \xi_{\nu}, \tag{11}
\end{equation*}
$$

so that the required gauge transformation is a solution to the equation

$$
\begin{equation*}
\square \xi_{\nu}=\partial^{\mu} \bar{h}_{\mu \nu} \tag{12}
\end{equation*}
$$

From this, obtain an explicit expression for ξ_{ν} in terms of the Green's function $\mathcal{G}(t, \mathbf{x})$ of the d'Alembertian, and explain why that expression is indeed the solution to the above equation.
(2.5) As we have seen, the Lorentz gauge reduces the Einstein equations to a particularly simple form. In vacuum $\left(T_{\mu \nu}=0\right)$ one has $\square \bar{h}_{\mu \nu}=0$, or

$$
\begin{equation*}
\left(-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}\right) \bar{h}_{\mu \nu}=0 . \tag{13}
\end{equation*}
$$

Consider a plane gravitational wave of the form

$$
\begin{equation*}
\bar{h}_{\mu \nu}=A_{\mu \nu} \cos (\omega t-\mathbf{k} \cdot \mathbf{x}) \tag{14}
\end{equation*}
$$

for some constant tensor $A_{\mu \nu}$. We have seen that this is a solution to (13) on condition that $\omega=c|\mathbf{k}|$. Show that the wavefronts are perpendicular to \mathbf{k}, and that $\omega=c|\mathbf{k}|$ implies that the wave propagates at the speed of light.

