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From Einstein Equations to Wave equation
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Newton’s theory of gravity

. > Force and potential
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> Given p(x), how do we solve for olx)?

I

olx) = dnGp(x)

Suppose we had a function (x)
such that VG (x) = §°(x)

Then solution to Poisson equation:
B(x) = 4x G / d'x'p(x') G(x - X)
V

because
Vip(x) = 4nGV>2 [ d*x' p(x") G(x — x')
oV

= JWf}[ﬁix’p[x’]Tif}{x x')

o W

= 4nG [{f‘qx’p[x’]&ﬁ[x x')
Jv
= A7l p(x) J



Newton’s theory of gravity

> Want to find a function G(x) such that
ViG(x) = 8 (x) (%)
This is called the Green’s function of the Laplacian operator

> To find G(x), take as ansatz that G(x) = g(r) where = = |x]
" Integrate both sides of (*) over sphere of radius /i centered on origin:

/ V:G(x)d*x =1  because f & x)d*x =1
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Newton’s theory of gravity

> Solution to the Poisson equation thanks to Green’s function:

: . , Gplx
olx) = -1?:{'?[ .rf{:'{;f;{x"} Glx-x) = f:r{:'-:] _ f Px' plx ,:.II
Vv v lx — x|

This makes sense!

" Contribution to @(x) from infinitesimal mass element dM’ at x”:
GdM' G p(x'") d*x’

x x’|_ |x — x|

" Total potential ¢(x) at X obtained by “summing” over all contributions

x — x| B(x)

x



Newton’s theory of gravity

> Solution to the Poisson equation thanks to Green’s function:
Gp(x)

x — x|

o(x) =~1?:G‘fvff*x;p{x“jﬂ'(x—x;]| — | ¢(x) = - fwﬂiﬂ;:'::I

> Note that the density distribution is allowed to be time-dependent!
" Poisson equation:
V3o(t.x) = 47G p(t, x)
" Green'’s function of the Laplacian:
ViG(x) = 6°(x)
" Solution to the Poisson equation remains the same:

ot x) = /i’f{x;ﬁ{f.}f] Glx—x') =|o(t.x) = _/;f*x il kbl
v v

x — x| o(t, x)

f.x

Any change in the density causes an immediate change in potential, no matter
how far away!



Gravity and action at a distance

» Newtonian gravity: instantaneous action at a distance

» Not true in Maxwell’s theory of electromagnetism!

" Fields E, B at distance D from a charge/current distribution:
What happens at time t depends on what charge/current distribution was
at earlier time, t - D/c

" Wave equation for E, B with propagation speed c

> Special relativity: speed of light c is “speed limit” for any kind of
information transfer

» General relativity is a dynamical theory (involves time derivatives!)
" Does it imply finite propagation speed for gravity?

" Is there a wave equation for the gravitational field?



General relativity for weak gravitational fields

> Einstein equations:

EW{J ]_:“”

i

-l. Com—
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Left hand side involves derivatives of the metric 7. w.r.t. time and space

> Equations will simplify when gravitational fields are weak:

% 1

Qv = e h‘,u.!-' |h,|m

» General relativity allows for general coordinate transformations x'* ()
" Many of those will make f,,,. large!

"  Will restrict ourselves to “small” coordinate transformations
” " "5 ) dr? dr”
T =T + Coordinate transformations acting ... = = - q
E on the metric: a ' o' a

Here £¥() is allowed to be different at different points, but has to have
small effect!



General relativity for weak gravitational fields

¥,
> With the notation 8, = ——:
o™
h:m = hy = (&0 + AEL) “gauge transformations”

> For all intents and purposes, we can view h,. as a tensor that lives on a flat
spacetime

" To linear order, raising and lowering of indices happens with 17**and 7. :

h*, = ¢"hg = 0" hg + O(|R]°) Exercise

> Convenient definition before we continue:

1
h'“!"' E .|r-t-“|_.l - Ejh_“_.l Jr-t- With Jr-t- = Tfﬂ'jhﬂ,j

—

which transforms under gauge transformations as

ﬁ:u- — JF't'|hl--' - {‘:}JLEU I' '!::ji-'E_i: - rlr,uh'!:],r:l‘fp} ExerCise




“Linearized” general relativity

> Start from the full Einstein equations:

T srG
{J#J_. — rT ]-I“].-'

Substitute '

G = Tuw + .h-“_y

and keep only terms See lecture notes for more details

linear in (derivatives of) h,,,
or equivalently i,

- - - R 16w
Df-i-iuy |' j}ﬂj;f}nffrﬁiﬂg - f‘-}n{..l’yf-i-“ﬁ - {-'P?t:'jlulr‘t]-'p — _T jils
where & = ™,
and [ is the d’Alembertian operator
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“Linearized” general relativity

> Linearized Einstein equations:

) - L 167G
Ohy + O Ry — F Oty — POy = ——

. s
{'.Ll

» Some terms can be gotten rid of by using gauge transformations!
ii':m — "F‘i']lu-' o l[":},u.'f]a' I‘ '!!:j!-"flu - rlruu!!:j,ril‘fp}

" Whatever h,, Iis, there always exists a gauge transformation such that

&, =0 “Lorentz gauge” Exercise

" In that case the linearized Einstein equations become a lot simpler!
------------------------- 167C

] i yFy F f i £ i iy gt
e + j]#‘dp O hpe _rjn{ vty _,_,fﬁdﬁhw - TT.;H-'
" Result:
, 16w (s
h,, =——7FT,




“Linearized” general relativity

> Linearized Einstein equations (dropping the prime):

Oh,, = — lﬁi(’ T Lorentz gauge | &*hy =)
C

> Given an energy-momentum tensor 1., how do we solve for hy,, ?

" Suppose we had a Green'’s function &(t, x) for the d’Alembertian [] :
OG(t,x) = 6" (t.x) where &'(t,x) = (t) #*(x)

" Then the solution to the linearized Einstein equations would be

- 167G .
hu(t, x) = —— fdf’d*x’]",ﬂ,{f“.x’)g(f — ' x —x')
i
because I
Oh,,(t,x) = - :1 - [df’dx’ﬂm{f’.x’] OG(t — ', x — x')
167G

A

S —— [dr’dx‘ Tt xX") 6t =t/ x = X)

[

16w
-— Tult. x)




Green'’s function of the d’Alembertian

> Need the Green’s function of the d’Alembertian:

OG(t,x) = 6" (t.x) where §(t,x) = 8(t) §*(x)
In full:
1 0° 1 o
—{—Ey(f x) 4+ VG(t,x) =4, x)

> Away from the origin ({5'1{#_ x) = () this looks like the equation for a wave!

" Wave equatlon in one spatial dimension:
1 e

2 2
I
Solutions: { glt.x) = f (f — F) wave traveling in positive x direction

}2
+ —g(t,T) =0
g(t,z) éﬂ.r-’g{ r)

glt.r)=f (a‘ i f) wave traveling in negative x direction
-

" Ansatz in three spatial dimensions:

T') wave traveling away from the origin r = ()

1
Gt.r) = ;F (Il o F and decreasing in strength as it does so



Green'’s function of the d’Alembertian

> Need the Green’s function of the d’Alembertian:
1 9% _ 5 p
_{EEE"“'K] + V°G(t,x) =4d"(t, x)

> Ansatz: G(t.r) = lF (f - I_) ,or Git.x) = LF (a‘ H)
.

i |1|

> Substituting into the equation leads to

—4x F(t) = 4(t)
Hence
G(t.x) = ——i{’i (a‘ - H)
T |x| c

" Asingle wavefront spreading from the origin at speed of light: r = |x| = ¢t

> Side note: 1 x|
" Glt.x) = —J——ﬂ' (# - —) is the retarded Green'’s function
L

1 . X
" Gltx)=———0 (f f |T) is the advanced Green’s function (time-reversed!)



Green'’s function of the d’Alembertian

> Linearized Einstein equations:
l6m(s

. s
{'I-l

I:lh']:“_, e

> General solution in terms of Green'’s function:
16w .
— fﬁf“d‘x’ To(t.x)G(t — . x — X

huo(t, x) = ——

i

> We have found
1
G(t,x) = _4ﬁ|1|ﬁ(f f)

L

> Substituting:

4(s . - x’ 1
h,“,,.{f_]{] = — fdfld.lxr T,ﬂ,(ff.x"}-.rﬁ (f ¥ |I |)

e e x — x|

> Integrating over time:

B ._1{:'}{{,! , T (f - 3‘:1 _}:_:)
V

By (. x) = i X e — ]




No instantaneous action at a distance!

> Gravitational field due to arbitrary energy-momentum distribution:

i [, Tw(t -2
bt x) = — " x -
a1, x— x|

> Previously, in Newtonian gravity:

Ix — x| o(t, x)

> The picture in Einsteinian gravity:

|x _ xl'l hi“"'{#'x}

No
instantaneous
action at a
distance! /



Gravitational waves

> Linearized Einstein equations:
l6m(s

] s
{‘1

DIFI#]_. _ =

» Away from matter/energy distributions, in vacuum ( T,.,=0):
Oh,, =10

e

> This is the familiar wave equation with propagation speed ¢ :

( 208 ) thw

» Example: plane wave

IFI.I'-“" — ..".1“]_.1 mh{u.r'f = k ' }:.}
2

For this to be asolution: — —k-k=0 = w = c|k|
o2

If traveling in z direction: T = Ay cosw(t — z/c)]

Usually one has superpositions of plane waves traveling in different directions



Summary

Newtonian gravity has instantaneous action at a distance:

G p(t,x)
x — x|

Vio(t,x) = dnGp(t.x)| = oft.x) = - /tfix’
v

For weak gravitational fields the Einstein equations become

I:”-_I 3 ].ET:G

pabs . pabs
A

in the Lorentz gauge | d*h, =0

In Einsteinian gravity, time dependence in the source is communicated at the
speed of light:

4(r : i e
/d‘ix’
¥

hu(t, x) = — |}[ — x;l

In vacuum ( T},,, = 0) the linearized Einstein equations become a wave equation

l 'EF - ° [
e 42\ R =0 ravitational waves
( 2o ) ”" g




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

