


 Force and potential

 Given          , how do we solve for          ?

 Suppose we had a function            
such that 

 Then solution to Poisson equation:

      because      

Newton’s theory of gravity



 Want to find a function            such that 

      This is called the Green’s function of the Laplacian operator

 To find           , take as ansatz that                        where
 Integrate both sides of        over sphere of radius      centered on origin:

   

      

Newton’s theory of gravity

because



 Solution to the Poisson equation thanks to Green’s function:

      This makes sense!

 Contribution to           from infinitesimal mass element          at      :

 Total potential             at      obtained by “summing” over all contributions

Newton’s theory of gravity



 Solution to the Poisson equation thanks to Green’s function:

 Note that the density distribution is allowed to be time-dependent!
 Poisson equation:

 Green’s function of the Laplacian:

 Solution to the Poisson equation remains the same:

Any change in the density causes an immediate change in potential, no matter 
how far away!  

Newton’s theory of gravity



 Newtonian gravity: instantaneous action at a distance

 Not true in Maxwell’s theory of electromagnetism!

 Fields E, B at distance D from a charge/current distribution:                          
What happens at time t depends on what charge/current distribution was 
at earlier time, t – D/c

 Wave equation for E, B with propagation speed c

 Special relativity: speed of light c is “speed limit” for any kind of 
information transfer

 General relativity is a dynamical theory (involves time derivatives!) 

 Does it imply finite propagation speed for gravity?

 Is there a wave equation for the gravitational field?

Gravity and action at a distance



 Einstein equations:

      
      Left hand side involves derivatives of the metric         w.r.t. time and space

 Equations will simplify when gravitational fields are weak:

 General relativity allows for general coordinate transformations

 Many of those will make           large!  

 Will restrict ourselves to “small” coordinate transformations

      Here            is allowed to be different at different points, but has to have
      small effect!

General relativity for weak gravitational fields 

 Coordinate transformations acting 
on the metric:



 With the notation                    : 

 For all intents and purposes, we can view         as a tensor that lives on a flat 
spacetime 

 To linear order, raising and lowering of indices happens with         and         :

 Convenient definition before we continue:

       
       which transforms under gauge transformations as 

General relativity for weak gravitational fields 

with

“gauge transformations” 

Exercise

Exercise



 Start from the full Einstein equations:

        where
        and         is the d’Alembertian operator       

“Linearized” general relativity

Substitute 

and keep only terms 
linear in (derivatives of)
or equivalently 

See lecture notes for more details 



 Linearized Einstein equations:

 Some terms can be gotten rid of by using gauge transformations!

 Whatever          is, there always exists a gauge transformation such that 

 In that case the linearized Einstein equations become a lot simpler!

 Result:

“Linearized” general relativity

“Lorentz gauge” Exercise



 Linearized Einstein equations (dropping the prime):

 Given an energy-momentum tensor        , how do we solve for        ?

 Suppose we had a Green’s function             for the d’Alembertian        :

 Then the solution to the linearized Einstein equations would be

      because  

“Linearized” general relativity

Lorentz gauge 

where



 Need the Green’s function of the d’Alembertian:

       In full: 

 Away from the origin (                     ) this looks like the equation for a wave! 

 Wave equation in one spatial dimension: 

       Solutions:

 Ansatz in three spatial dimensions:

Green’s function of the d’Alembertian

where

wave traveling in positive x direction

wave traveling in negative x direction

wave traveling away from the origin
and decreasing in strength as it does so



 Need the Green’s function of the d’Alembertian:

 Ansatz:                                          , or

 Substituting into the equation leads to

      Hence

 A single wavefront spreading from the origin at speed of light:

 Side note:
                                                        is the retarded Green’s function 

                                                   is the advanced Green’s function (time-reversed!)

Green’s function of the d’Alembertian



 Linearized Einstein equations:

 General solution in terms of Green’s function:

 We have found

 Substituting:

 Integrating over time:   

      
      

Green’s function of the d’Alembertian



 Gravitational field due to arbitrary energy-momentum distribution: 

 Previously, in Newtonian gravity:

 The picture in Einsteinian gravity:  

      
      

No instantaneous action at a distance!

No 
instantaneous 
action at a 
distance!



 Linearized Einstein equations:

 Away from matter/energy distributions, in vacuum (                ): 

 This is the familiar wave equation with propagation speed     :

 Example: plane wave 

 For this to be a solution:

 If traveling in z direction:

 Usually one has superpositions of plane waves traveling in different directions 

Gravitational waves



 Newtonian gravity has instantaneous action at a distance:

 For weak gravitational fields the Einstein equations become 

 In Einsteinian gravity, time dependence in the source is communicated at the 
speed of light:

 In vacuum (               ) the linearized Einstein equations become a wave equation

Summary

in the Lorentz gauge  

gravitational waves
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