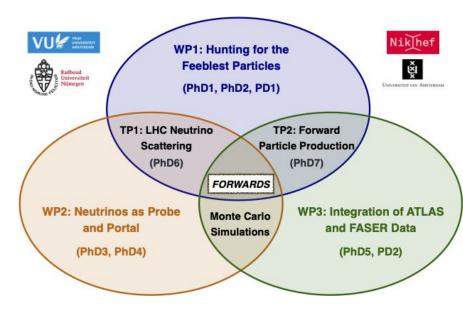

FORWARDS: The feeblest particles of the Universe under the LHC microscope

Lydia Brenner, Flavia de Almeida Dias, Melissa van Beekveld, Patrick Koppenburg, Juan Rojo, Susanne Westhoff, Mengqing Wu

The aim


We propose a comprehensive program aimed to scrutinise the feeblest particles in the Universe by exploiting LHC high-energy forward particle production.

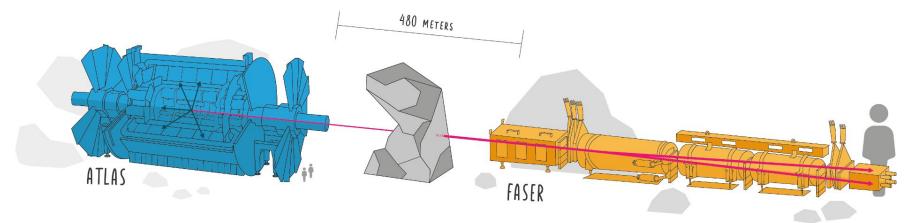
Research goals

- 1. Do **neutrinos** exhibit novel properties when probed at LHC energies?
- 2. Does **FIP dark matter** interact with standard matter in the FASER far-forward region?
- 3. Which uncharted phenomena in the **proton substructure** are resolved by the LHC neutrino beam?
- 4. Are tensions from astroparticle physics data falsified in the controlled laboratory environment of FASER?

Innovative nature and Consortium quality

Innovation

By leveraging a hitherto ignored source of energetic light particles produced by the LHC, this project will lead to paradigm shifts in (astro-)particle physics. **No existing or planned experiment achieves a comparable reach in our core targets**.


Consortium

By connecting theory modelling with data analysis and interpretation, it will kick-start a **vibrant world-leading Dutch program in LHC far-forward physics**, combining guaranteed deliverables in neutrino and hadronic science with unprecedented sensitivity to new feebly interacting particles.

FORWARDS!

Thanks to Flavia de Almeida Dias, Melissa van Beekveld, Patrick Koppenburg, Juan Rojo, Susanne Westhoff, and Mengqing Wu

