Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
000	000	00000	000	000	00	0000	00000

Improving Signal Readout of an eEDM Measurement

Vedang Sumbre

Bachelor Project Presentation

29th June, 2023

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides

Outline

- 1 Introduction
- 2 Research Goal
- 3 LIF and Depletion
- AOMs
- 5 200MHz AOM
- 6 40 MHz AOM

7 Conclusion

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
000	000	00000	000	000	00	0000	00000

We try to do a sensitive measurement for the electric dipole moment of an electron.

We try to do a sensitive measurement for the electric dipole moment of an electron.

Theoretical value: $d_{\rm e} \sim 1.0 \cdot 10^{-35}$ e cm [Y. Ema et al, 2022]

We try to do a sensitive measurement for the electric dipole moment of an electron.

Theoretical value: $d_e \sim 1.0 \cdot 10^{-35}$ e cm [Y. Ema et al, 2022]

Best experimental limit so far: $|d_e| < 4.1 \cdot 10^{-30}$ e cm using HfF+ [T. Roussy et al, 2022]

We try to do a sensitive measurement for the electric dipole moment of an electron.

Theoretical value: $d_e \sim 1.0 \cdot 10^{-35}$ e cm [Y. Ema et al, 2022]

Best experimental limit so far: $|d_e| < 4.1 \cdot 10^{-30}$ e cm using HfF⁺ [T. Roussy et al, 2022]

NL-eEDM target: $|d_e| < 5 \cdot 10^{-30}$ e cm using BaF [NL-eEDM, 2018]

How?

- Ground state of BaF has F = 0 and F = 1 hyperfine levels
- Optical pumping from the F = 0 level to the F = 1 level to create a superposition with a measurable phase difference
- Molecules counted using laser-induced fluorescence.

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
000							

NL-eEDM setup

Figure 1: NL-eEDM fast beam setup

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
000	•00	00000	000	000	00	0000	00000

Motivation

Figure 2: The photon count rate of transition as a function of laser frequency. Measurement from the NL-eEDM collaboration.

Introduction ooo like and like

Research Goal

"Is it possible to use one laser to probe different frequencies simultaneously?"

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
	000						

Quick Answer

Yes.

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
	000						

Quick Answer

Yes.

A possible method is using acousto-optical modulators.

Zooming in at D1

Figure 3: NL-eEDM fast beam setup

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
		00000					

Zooming in at D1

Figure 4: Schematic of BaF beam passing through a laser field at D1. NOT TO SCALE.

LIF and Depletion of Molecules

Molecules get depleted:

$$N(z) = N_0 - \int_{-\infty}^{z} \alpha I(z) N(z-1) dz \qquad (3.1)$$

Figure 5: Simulated depletion with intensity set to $5mW/cm^2$

Tempting to set a very high laser intensity. Bad idea!

Tempting to set a very high laser intensity. Bad idea!

Figure 6: Simulated depletion with intensity set to 50mW/cm²

Ideally require laser to be on resonance.

Ideally require laser to be on resonance.

Figure 7: Simulated depletion with intensity set to 5mW/cm^2 and detuning 5 MHz.

So, what do we need?

We want to have two laser fields:

So, what do we need?

We want to have two laser fields:

• 48MHz frequency difference

So, what do we need?

We want to have two laser fields:

- 48MHz frequency difference
- $\bullet~Intensity \sim 1 mW/cm^2$

So, what do we need?

We want to have two laser fields:

- 48MHz frequency difference
- $\bullet~\mbox{Intensity} \sim 1 \mbox{mW/cm}^2$
- Sufficient spatial separation

Acousto-Optical Modulators

Figure 8: A schematic of a non resonant AOM.

Set up Picture

Figure 9: Picture of the set up

Setup Diagram

Figure 10: Schematic of the 200MHz AOM set-up

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
				000			

Results

(a) 0th and 1st order beams from RF source 1. Power of 1st order beam = 0.454mW.

(b) 0th and 1st order beams from RF source 2. Power of 1st order beam = 0.094mW.

Figure 11: Pictures of the 0th and 1st order beams from the two RF sources individually.

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
				000			

Results

Figure 12: A picture of the IR reader card with both RF sources turned on using a 200MHz AOM.

Setup Diagram

Figure 13: Schematic of the 40MHz AOM set-up

Results

Figure 14: 0th and 1st order beams from 40MHz AOM.

Power of 0th order beam = 1.30mW Power of 1st order beam = 2.11mW

Comparison of Results

(a) 200MHz AOM result

(b) 40MHz AOM result

Figure 15: Comparison of the results from the two AOMs

Power of beams from 200MHz AOM: 0.454mW & 0.094mW Power of beams from 40MHz AOM: 1.30mW & 2.11mW

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
000	000	00000	000	000	00	0000	00000

• Can we probe different frequencies at the same time?

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
000	000	00000	000	000	00	0000	00000

Can we probe different frequencies at the same time? YesHow?

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
						0000	

- Can we probe different frequencies at the same time? Yes
- How? Using an AOM
- Which AOM is better?

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
						0000	

- Can we probe different frequencies at the same time? Yes
- How? Using an AOM
- Which AOM is better? 40MHz

What's next?

Figure 16: Implementation apparatus [O. Böll]

Thank you

Thank you for your attention!

Gaussian Beam Optics

Laser intensity can be written as Gaussian distribution:

$$f(z) = A \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$$
(8.1)

Beam converges and diverges by angle θ from beam waist w_0 :

$$w_0 = \frac{\lambda}{\pi\theta} \tag{8.2}$$

Rayleigh length : distance beam can go without divergence [Paschotta]:

$$z_R = \frac{\pi w_0^2}{\lambda} \tag{8.3}$$

Lorentzian Distribution

$$\mathcal{L}(\omega) = \frac{s_0}{2*(1+s_0+\frac{\delta^2}{\gamma})}$$
(8.4)

 γ is the decay rate of the molecule:

$$\gamma = \frac{1}{\tau} \tag{8.5}$$

The laser frequency detuning δ is defined as:

$$\delta = \omega_L - \omega_0 \tag{8.6}$$

Introduction	Research Goal	LIF and Depletion	AOMs	200MHz AOM	40 MHz AOM	Conclusion	Backup Slides
							00000

PMT equations

Number of photons:

$$N_{\gamma} = P_{ext} * N_M \tag{8.7}$$

However, PMT efficiency considerations:

$$N_{F=1} = \varepsilon N_{\gamma} \tag{8.8}$$

$$\varepsilon = \Omega * QE * transmission$$
 (8.9)

Tempting to set very high laser intensity. Bad idea!

SNR Considerations

Figure 17: SNR vs LIF Laser Intensity, [E. Bobrova Blyumin, 2023]

Full setup

