

BACHELORS SYMPOSIUM 2023

Calculation of electron affinity of polonium

Student: Supervisor:

Katie Piner Anastasia Borschevsky

Outline:

- 1 Introduction
- 2 Theory and method
- 3 Results
- 4 Summary and outlook

Basic properties

[Xe] 4f¹⁴5d¹⁰6s²6p⁴

PERIODIC TABLE OF ELEMENTS

Basic properties

ELECTRON AFFINITY (EA)

The energy change that occurs when an electron is added to the neutral atom.

EA=E(neutral atom) - E(negative ion)

IONIZATION POTENTIAL (IP)

The energy change that occurs when an electron is removed from the neutral atom.

IP = E(positive atom)-E(neutral atom)

Theory and method

1

2

3

Dirac-Hartree-Fock

Coupled Cluster

Basis sets

Dirac-Hartree-Fock

HARTREE-FOCK EQUATION

DIRAC HAMILTONIAN

$$\hat{F}\chi_i = \epsilon_i \chi_i$$

$$\hat{H}\Psi = [c\alpha \cdot \hat{p} + \beta mc^2 + V]\Psi$$

THE SLATER DETERMINANT

Coupled cluster

ELECTRONIC CORRELATION

Correlation energy describes the influence of the presence of other electrons on the movement of one electron.

USE OF THE EXPONENTIAL ANSATZ

$$\Psi_{CC} = e^{\hat{T}} \chi$$

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_n$$

$$E_{CC} = \langle 0|\hat{H}|0\rangle \hat{H} = e^{-\hat{T}}He^{\hat{T}}$$

Basis sets

SLATER TYPE ORBITALS

$$\phi_{abc}^{STO}(x,y,z) = Nx^a y^b z^c e^{-\zeta r}$$

GAUSSIAN TYPE ORBITALS

$$\phi_{abc}^{GTO}(x,y,z) = Nx^a y^b z^c e^{-\zeta r^2}$$

Figure 1: Comparison of the shape of a STO and GTO functions.

CONTRACTED GAUSSIAN TYPE ORBITALS

$$\phi_{abc}^{CGTO}(x,y,z) = N \sum_{i=1}^{r} c_i x^a y^b z^c e^{-\zeta r^2}$$

Basis sets

CARDINALITY

• Double zeta: 2 functions

• Triple zeta : 3 functions

• Quadruple zeta: 4 functions

• Quintuple zeta: 5 functions

DIFFUSE FUNCTIONS

- 1 added layer of diffuse functions : s-aug
- 2 added layers of diffuse functions : d-aug
- 3 added layers of diffuse functions : t-aug

NUMBER OF CORRELATION FUNCTIONS

- Valence (v)
- Core-valence (cv)
- All-electrons (ae)

COMPUTATIONAL DETAILS

Usage of the K.G. Dyall basis sets

Input into the program as Dyall.vXz; Dyall.cvXz; Dyall.aeXz

Or as: s-aug-dyall.YXz; d-aug-dyall.YXz; t-aug-dyall.YXz

What parameters can we change ?

METHODS:

DHF; CCSD; CCSD(T)

VIRTUAL CUT-OFF

NUMBER OF CORRELATED ELECTRONS

BASIS SETS:

Cardinality

Correlation functions

Diffuse functions

Results

1

DHF VS CC

2

Varying basis sets

3

Most accurate final result

DHF VS CCSD and CCSD(T)

DHF VS CCSD(T)	DHF	Error	CCSD	Error	CCSD(T)	Error	Reference
IP in eV	7.810	0.608	8.357	0.061	8.407	0.011	8.418
EA in eV	0.628		1.355		1.456		1.461

Influence of basis set cardinality

Influence of correlation functions

Importance of correlated electrons	v5z	cv5z	ae5z	Reference
IP in eV	8.435	8.401	8.401	8.418
EA in eV	1.428	1.422	1.422	1.461

Influence of diffuse functions

Importance of augmentation	ae5z	s-aug-ae5z	d-aug-ae5z	t-aug-ae5z	Reference
IP in eV	8.401	8.404	8.404	8.404	8.418
EA in eV	1.422	1.453	1.454	1.454	1.461

Extrapolation to the complete basis set limit

$$E_{CBS1} = -\frac{E_{4z}^2 + E_{3z} * E_{5z}}{E_{3z} - 2 * E_{4z} + E_{5z}}$$

$$E_{CBS2} = \frac{4^3 * E_{4z} - 5^3 * E_{5z}}{4^3 - 5^3}$$

Extrapolation to the complete basis set limit

Most accurate final result of EA and IP

Basis set	ae5z	s-aug-ae5z	CBS	Reference
IP in eV	8.401	8.404	8.455	8.418
EA in eV	1.422	1.453	1.489	1.461

Katie Piner

Thank you for your attention

Any questions?

