

Heterogeneity of VELO's pixel response to a monochromatic radiation Fe55 source

Introduction

To study the fundamentals of the universe, CERN is founded in 1954

Introduction - LHCb

Studying the matter antimatter asymmetry

Introduction - VELO's purpose

To measure the passing of charged particles

From this: impact parameters, primary and secondary vertices

Introduction - Upgraded VELO

| 6

Half of the upgraded VELO detector [2]

Introduction - Functioning of pixels

- Charged particles ionize silicon
- Creating a measurable charge
- Pixel registers hit if charge > set threshold

Introduction - Challenge

Next step:

Calibrate pixels using monochromatic radiation Fe55 source threshold scan

However,

- Pixel are not identical:
 - Manufacturing variations
 - \circ Impurities
 - Electronics

Research question

How does the response of the pixels to the Fe55 source threshold scan compare to that of the average pixel?

Research subquestions

 \rightarrow If any, what is the nature of their difference?

→ Are longer exposure times required for proper calibration?

Theory - Flux spectrum

| 12

Integrating I(E) from E to infinity:

$$F(E) = Af \cdot \frac{1}{2} \left(\frac{s}{\sqrt{\pi}} e^{-\left(\frac{E-E0}{s}\right)^2} + (E0 - E) \cdot \operatorname{erfc}\left(\frac{E-E0}{s}\right) \right)$$

Particle flux
spectrum
$$+ A(1 - f) \cdot \frac{1}{s\sqrt{8\pi}} \cdot \operatorname{erfc}\left(\frac{E-E0}{s\sqrt{2}}\right)$$

Normalization
factor

Method - Data acquisition

VELO exposed to monochromatic (5.19keV) radiation (electrons) Fe55 source for a range of different thresholds

Four data sets available, hits stored in 256x256 matrices: 2nd and 4th data sets have largest exposure times

In this presentation, 2nd data set is considered

Method - Data processing

- Initial masking (faulty pixels)
- Elimination of bad acquisitions (strange behaviour)
- Trimming of thresholds were no hits were measured
- Mask pixel if no hits were measured for more than 80% of the thresholds
- > Compute particle flux

> Fit F(E) to spectrum of average pixel

- > Fit *F*(*E*) to spectra of each pixel
 - Fixing the fitting parameters except for A to those obtained from average pixel
 - . Free fit

> Chi-square test for goodness of fit

Results Spectra Pixel 127x151 2nd data set

Pixel of center, hot region. Higher flux than average

Sharp drop

Free fit performs better

Results Spectra Pixel 207x119 2nd data set

Sharp drop

Pixel further from center, colder region. Flux matches average

Free fit performs better

f values are 1 order of magnitude higher than for the spectrum of the average pixel

Values possibly in accordance with predictions from [3]

Discussion & Conclusion

- → The response of single pixels differs from the average pixel
 - Notable flux drop for higher but not equal thresholds
 - Due to low resolution
 - Feature vanishes when averaged
 - Free fit works much better than fixed fit

Discussion & Conclusion

- → The response of single pixels differs from the average pixel
 - Notable flux drop for higher but not equal thresholds
 - Due to low resolution
 - Feature vanishes when averaged
 - Free fit works much better than fixed fit
- → A lot of data cut and failed chi-square test for lack of hits (exposure time)
 - 2nd data set had 14.5h total exposure time. More is needed

References

[1] CERN. https://panoramas-outreach.cern.ch/index.html. Accessed: 28/06/2023.

 [2] K. Hennessy, "LHCb VELO upgrade," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 845, pp. 97–100, feb 2017.

[3] K. Mathieson et al., "Charge sharing in silicon pixel detectors," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 487, no. 1-2, pp. 113–122, 2002.

Additional figures

| 25

Results Spectra Pixel 193x203 4th data set

Pixel further from center, colder region.

Sharp drop

Free fit performs better

