Jet substructure correlations in quark gluon plasma

Bas Hofman

NNV Lunteren November 3, 2023

Lifetime ~ 10 fm/c ~ 10⁻²⁴ s Cannot probe externally

T > 150 MeV ~ 10¹² K Hadronic matter unstable

Recreate early universe before $\sim 10^{-6}$ s

Quark gluon soup

Evolution of a heavy ion collision

MADAI collaboration, Hannah Petersen and Jonah Bernhard

Evolution of a heavy ion collision

MADAI collaboration, Hannah Petersen and Jonah Bernhard

What reaches the detector

Evolution of a heavy ion collision

MADAI collaboration, Hannah Petersen and Jonah Bernhard

Can interact with the plasma

Gluon can radiate off

Gluon can radiate off

Bas Hofman

Bas Hofman

Not only the **energy** of the jet can be modified

Also the structure of the jet might change

Not only the **energy** of the jet can be modified

Also the structure of the jet might change

Not only the **energy** of the jet can be modified

Also the structure of the jet might change

No plasma

Quark gluon plasma

Jewel monte carlo simulations

No plasma

Quark gluon plasma

Jewel monte carlo simulations

Jewel monte carlo simulations

Monte Carlo: check many correlations to sensitivity

Bas Hofman

Monte Carlo: check many correlations to sensitivity

Bas Hofman

Monte Carlo: check many correlations to sensitivity

Bas Hofman

Monte Carlo: check many correlations to sensitivity

Bas Hofman

Monte Carlo: check many correlations to sensitivity

Data: measure interesting correlations

Bas Hofman

Angularity: observable with 2 parameters

Tune dependence to: Momentum: κ Angular: β

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} \left(\frac{p_{\mathrm{T}_{i}}}{p_{\mathrm{T}_{jet}}} \right)^{\kappa} \left(\frac{\Delta R_{i}}{R_{jet}} \right)^{\beta}$$

Angularity: observable with 2 parameters

Tune dependence to: Momentum: κ Angular: β

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} \left(\frac{p_{\mathrm{T}_{i}}}{p_{\mathrm{T}_{jet}}}\right)^{\kappa} \left(\frac{\Delta R_{i}}{R_{jet}}\right)^{\beta}$$

With $\kappa = 1$, $\beta = 2$ strongly correlated to mass

Angularity: observable with 2 parameters

Tune dependence to: Momentum: κ Angular: β

With $\kappa = 1$, $\beta = 2$ strongly correlated to **mass**

Bas Hofman

Jet mass: Slightly shifted

Bas Hofman

Jet mass: Slightly shifted

Angularity λ_{2}^{1} : Stronger modification

Bas Hofman

Jet mass: Slightly shifted

Angularity λ_{2}^{1} : Stronger modification

Models: Predict varying sensitivity

Bas Hofman

Bas Hofman

Heavy ion collisions

Not so easy in practice

Large background in heavy ions

More than 100x times more particles w.r.t. proton collisions

 $\langle N_{part} \rangle = \sim thousands$

Bas Hofman

Measurement

High precision tracking in high multiplicity environment

.....

ALICE detector

Measurement

Measure in <u>2</u> dimension \rightarrow **Unfold** detector in <u>3</u>

Mass Angularity Mass Angularity Momentum

Need to understand behaviour of detector in 3 observables

Measurement

Detector response

Conclusion

Quark gluon plasma + jets created in heavy ion collisions

Jets can lose energy in plasma

Also structure might change

Study correlations to find out how

Back up

Medium interactions

Bas Hofman

NNV Lunteren 2023

36