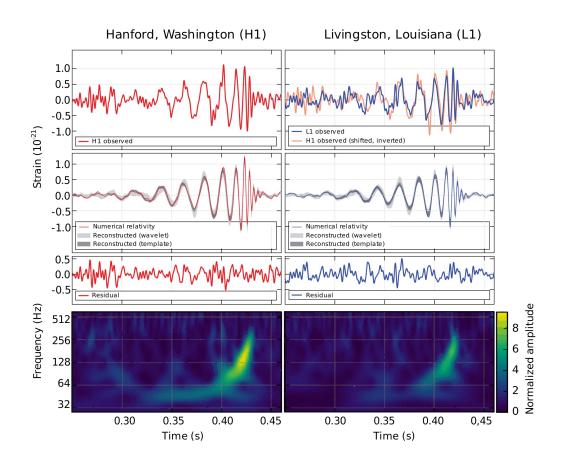


Detection of anomalies amongst LIGO's glitch populations with autoencoders

Melissa Lopez

m.lopez@uu.nl ArXiv: 2310.03453

How are gravitation waves detected?

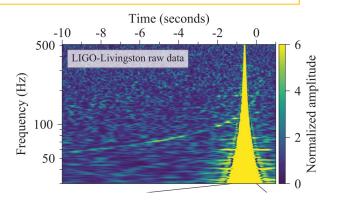


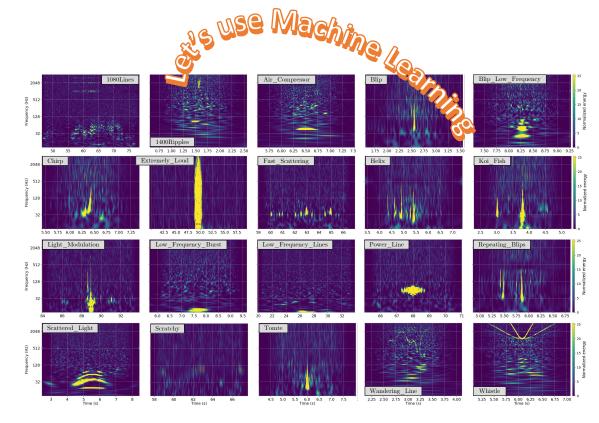
Transient noise a.k.a. glitches in LIGO

- Caused by instruments or environment (known or unknown)
- Diminish scientific data available
- Hinder GW detection (mask and/or mimic)
- Present in LIGO, Virgo and probably Einstein Telescope!

Idea: we need to mitigate them, so let's indetify them first

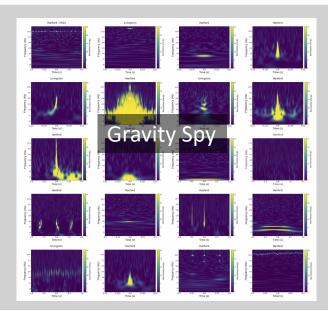
But... too many glitches! ~ 1 min⁻¹ during O2





Machine learning for glitch identification

Supervised learning: classification



Challenges

- Representation in the main strain of the detector
- Classes are rigid and labels expensive
- The detector evolves over time

Idea 1: we can use information from the detector itself, ie. *auxiliary* channels? → ~10⁶ channels to process!

Idea 2: Let's the data speak for itself→ unsupervised learning

Encode, encode, encode

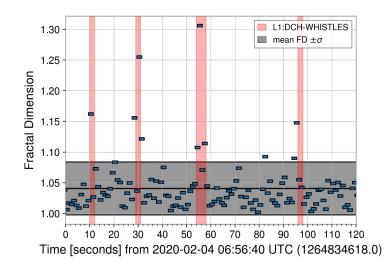
How can we reduce a 10⁶ auxiliary channels (ac)?

Select safe channels, i.e.not affected by GW (350 ac)

Encode with fractal dimension, i.e. measure complexity of the data

Use convolutional autoencoders

- M. Cavaglia 2022 \rightarrow 1h of data encoded in 1h
- Our work \rightarrow 1h of data encoded in 11s



Raw data

Domain knowledge

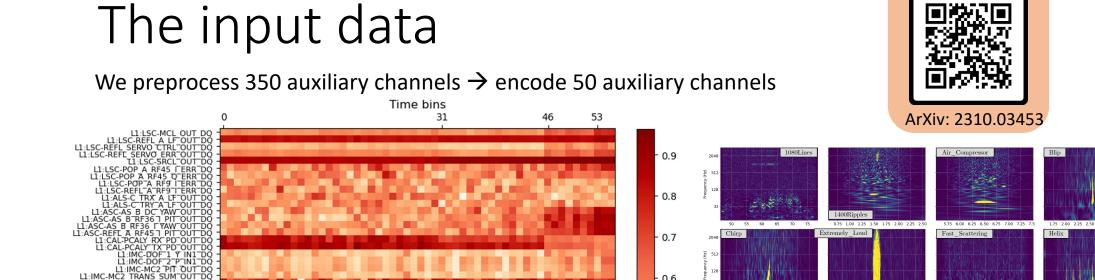
Data representation

ML

Information

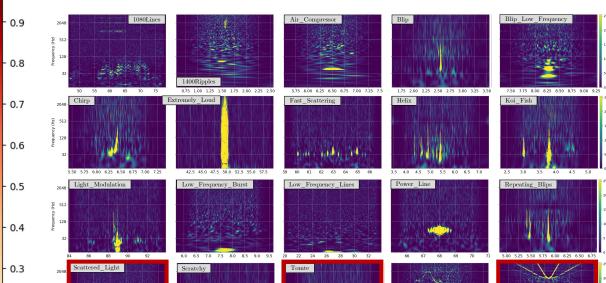
Robin van der Laag (UU) Expert in high performance computing

Paloma Laguarta (UM) Expert in ML PhD at LHCb



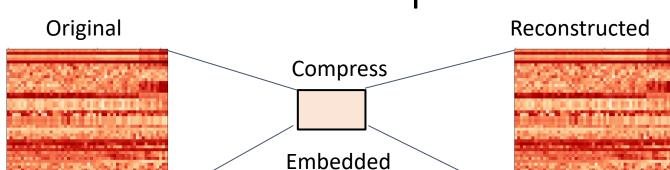
Time

0.2



SCAN ME

Classified with supervised learning



space

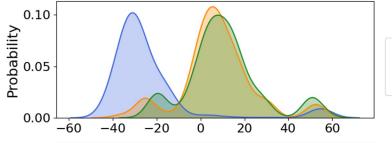
2-D projection with t-SNE

Benchmarking against supervised learning:

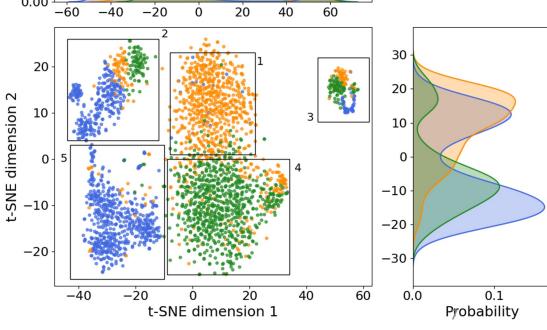
Clusters consistent with Gravity Spy, but

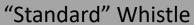
- Gravity Spy → spectrograms of h(t)
- Our work → fractal dimension with auxiliary channels

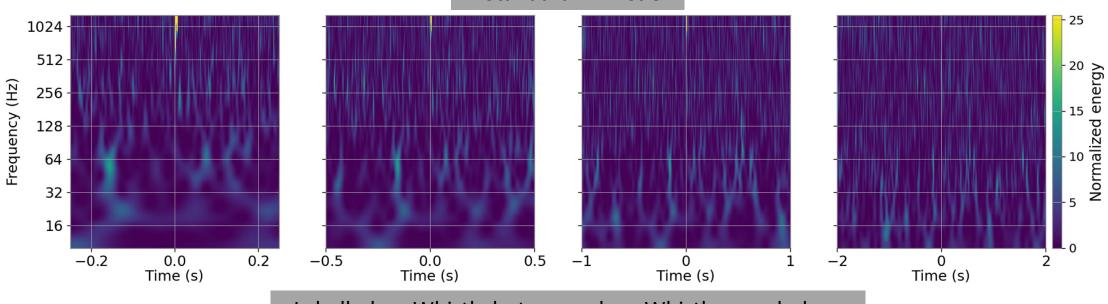
OK, now let's represent anomalies in spectrograms of h(t)



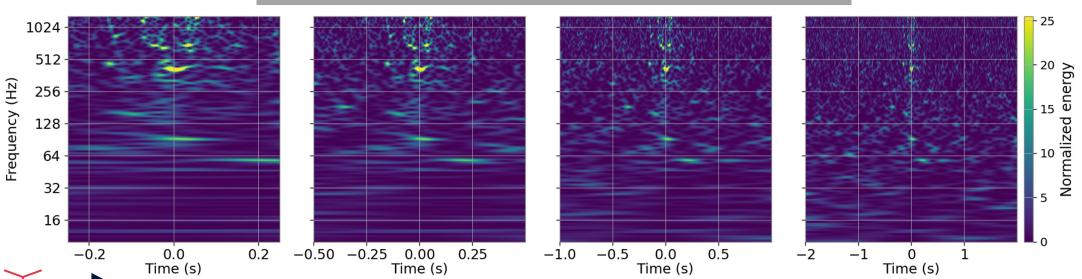
Scattered_Light

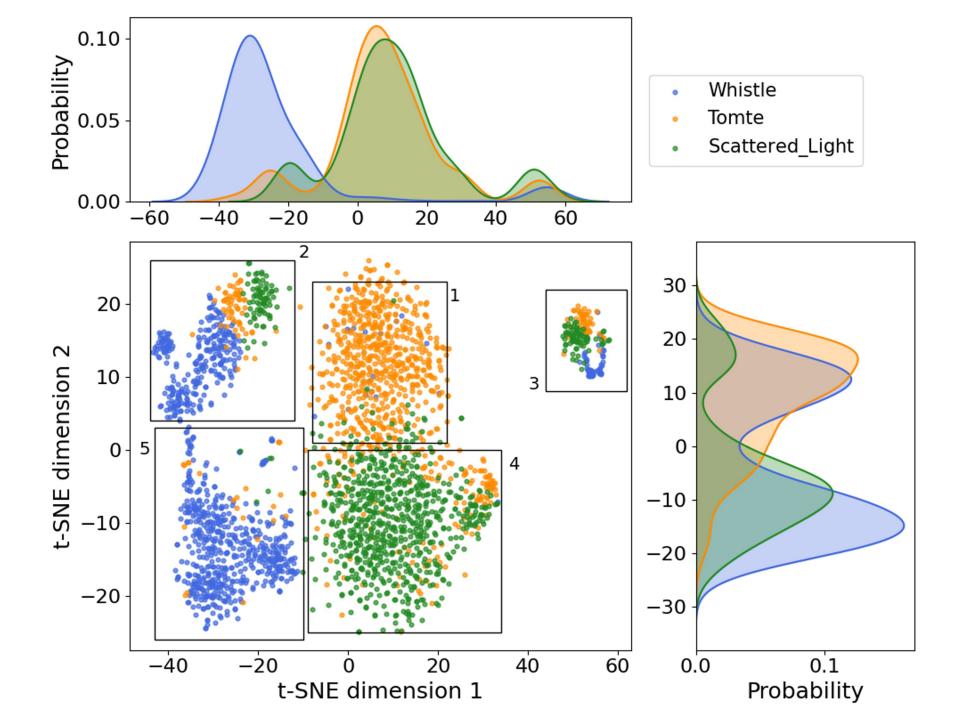




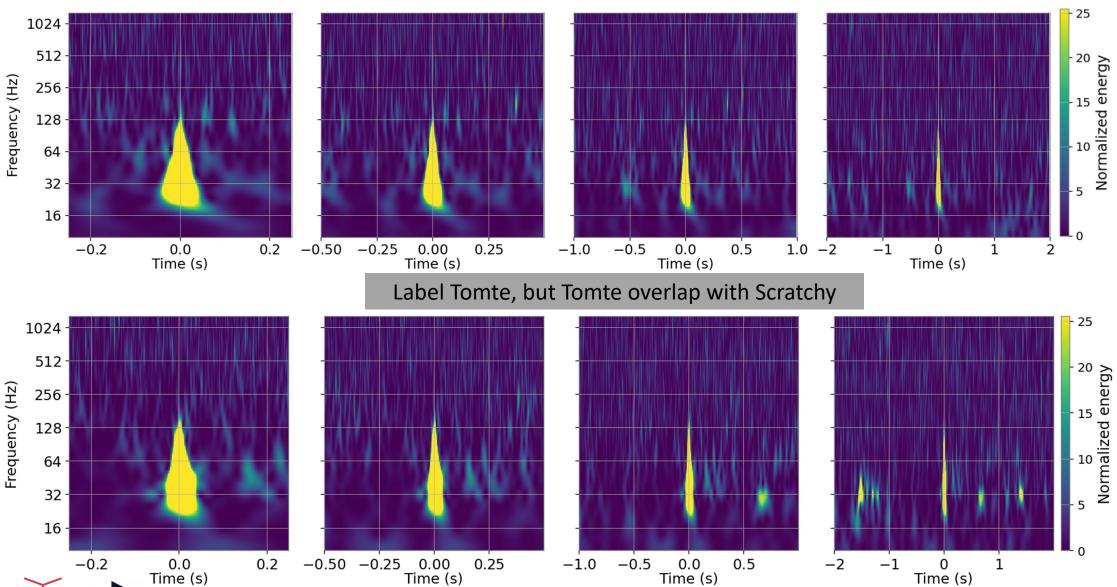


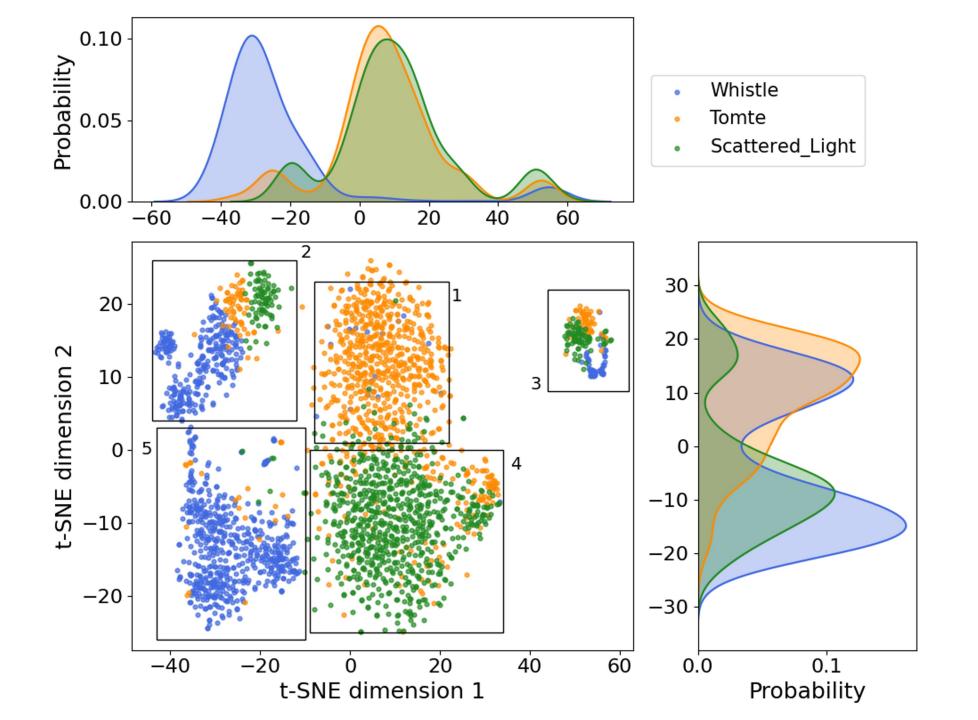
Labelled as Whistle but anomalous Whistle morphology

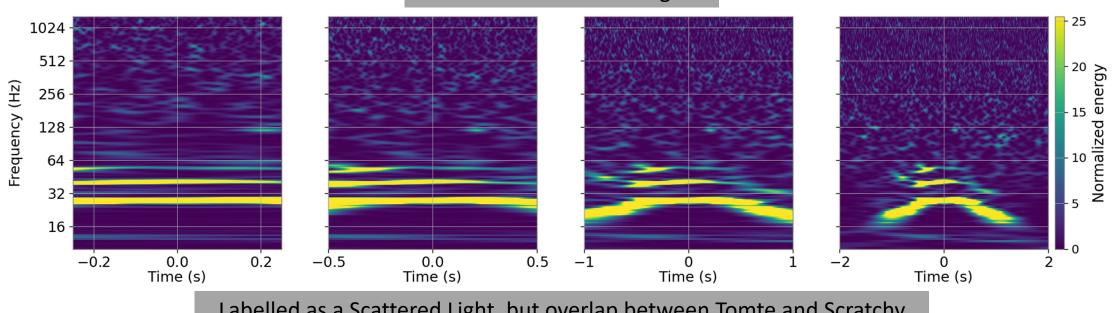




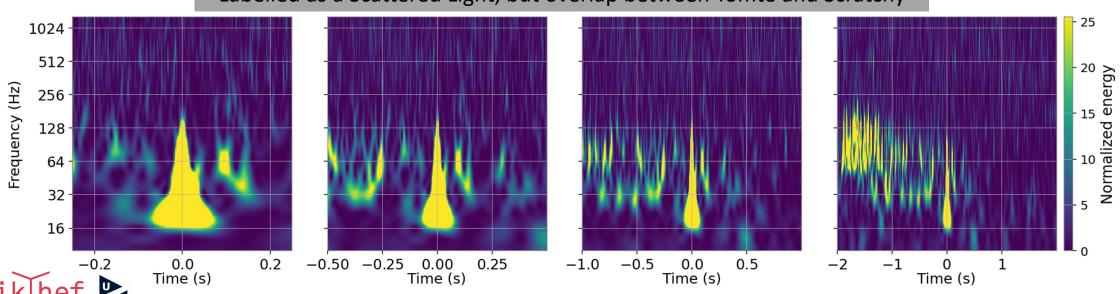
"Standard" Tomte

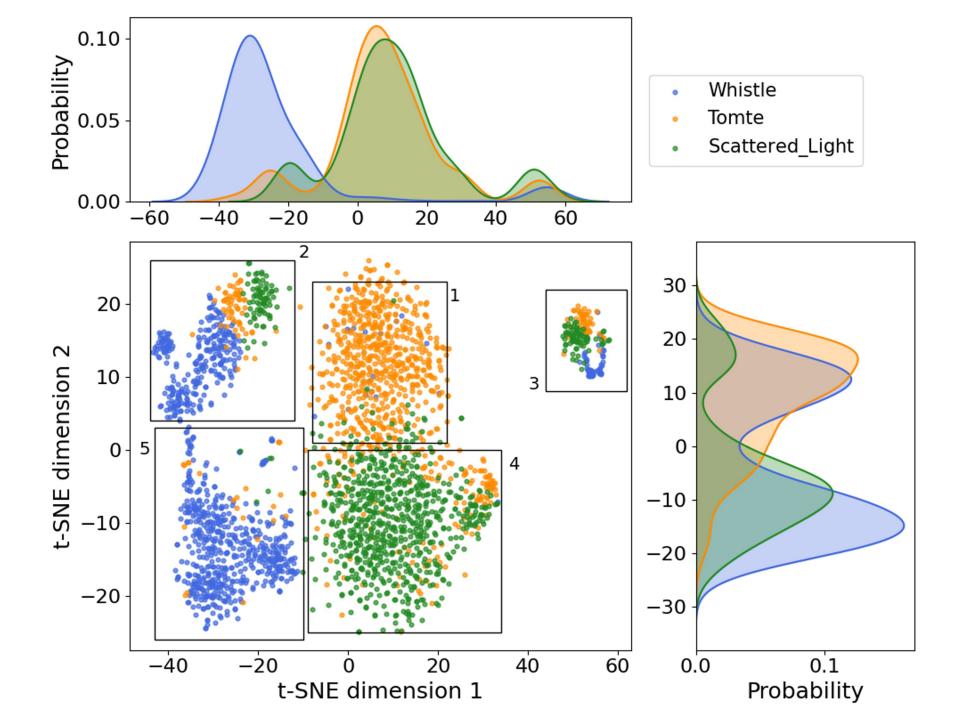


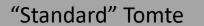


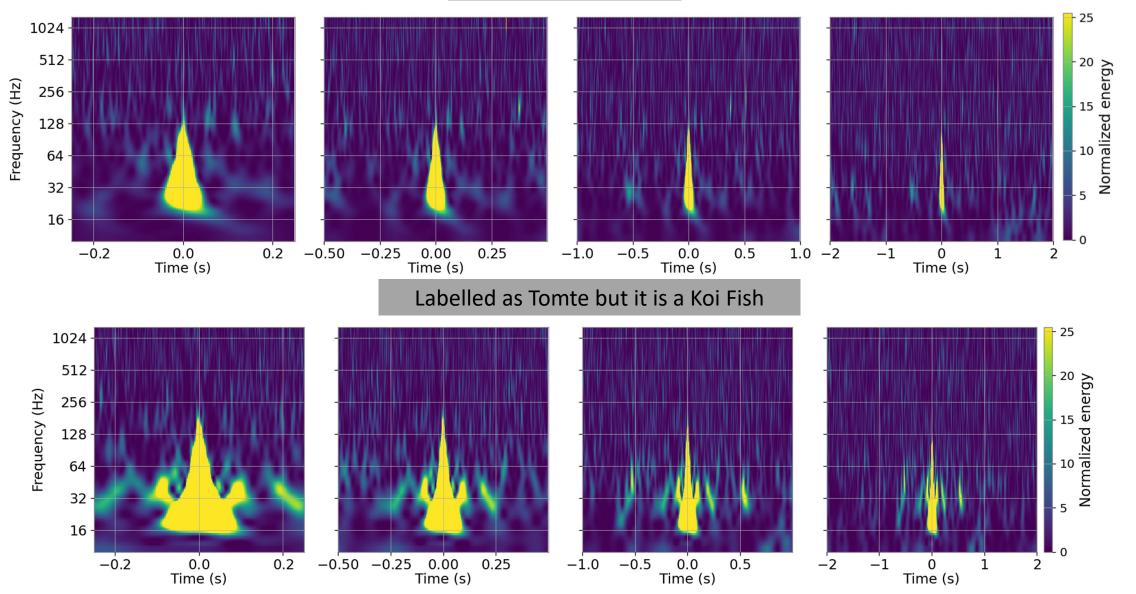


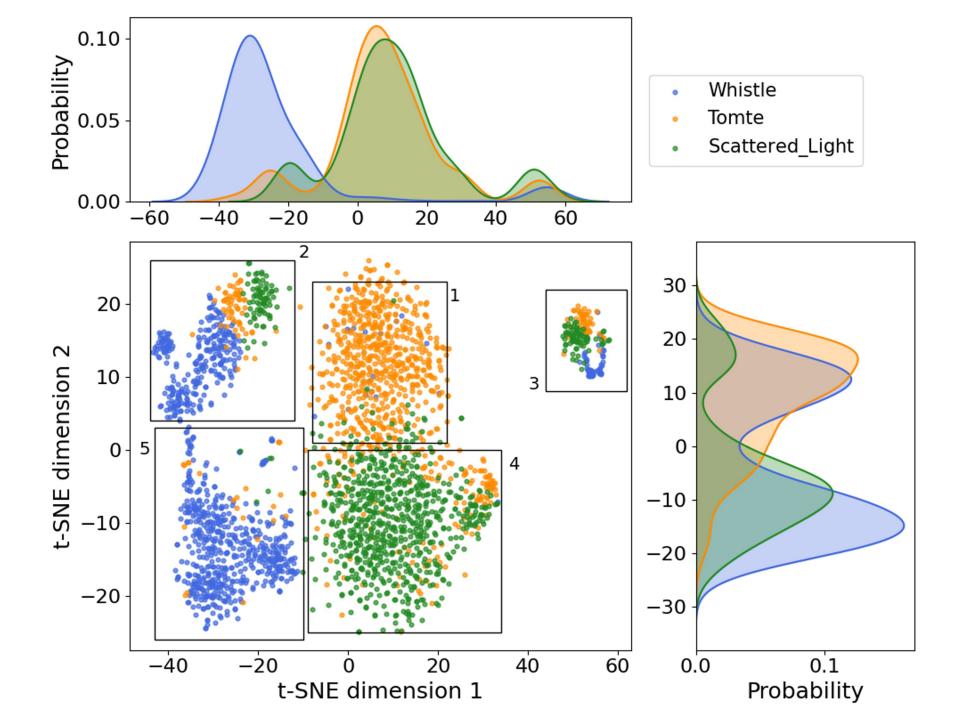
Labelled as a Scattered Light, but overlap between Tomte and Scratchy

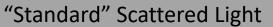


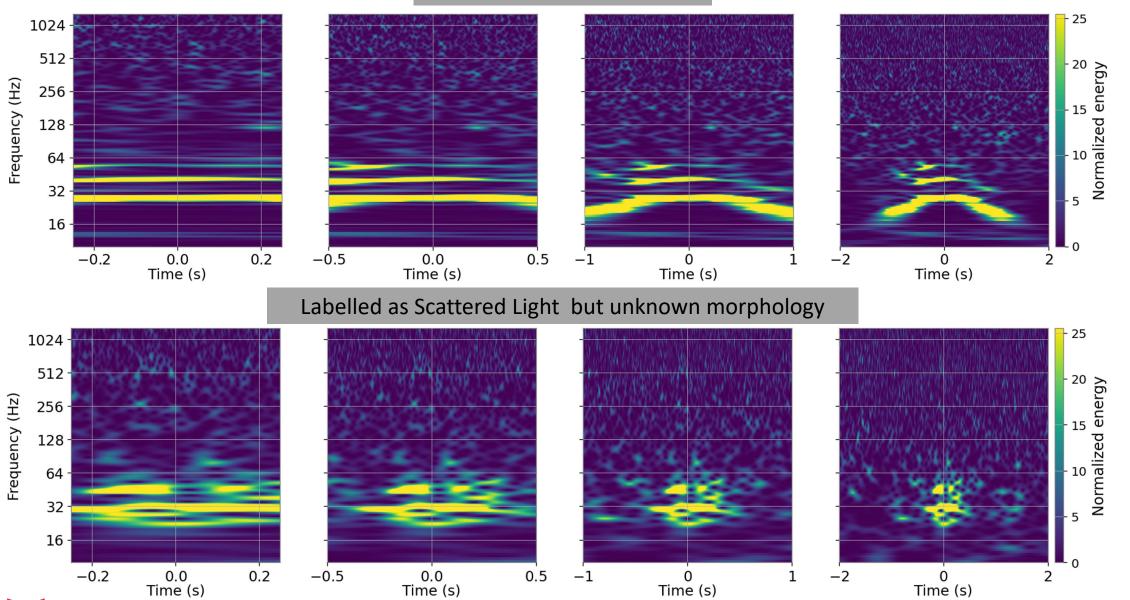












Results of compressed data

In total 177 anomalies were found, which constitute 6,6% of the data.

- **Anomalous whistles (49):**
 - 45% unknown morphologies, 28% misclassifications, 27% overlaps.
- **Anomalous Tomtes (57):**
 - 32% unknown morphologies, 21% misclassifications, 47% overlaps.
- **Anomalous Scattered Lights (71):**
 - 28% unknown morphologies, 72% misclassifications, 1 overlap.

Conclusions and future work

✓ Fractal dimension representation is complementary to h(t)

✓ Unsupervised learning can reveal misclassifications of supervised learning, glitch

overlaps and novel morphologies

> Extend to glitch populations of GW detectors

> Relate glitches to auxiliary channels via explainable ML

Thank you for listening! Questions?

m.lopez@uu.nl

