The Chiral Magnetic Effect in isobaric nuclei at LHC energies

Jasper Westbroek, Gravitation, Astro- and Particle Physics (GRAPPA)

NNV Lunteren, 3 November

Quantum ChromoDynamics (QCD) and heavy ion collisions

- The strong coupling constant decreases as the momentum transfer increases
- Large momentum transfer—Asymptotic freedom
- $\bullet \quad \ \ Low momentum transfer {\rightarrow} Confinement$
- Deconfined state of quarks and gluons in heavy ion collisions, Quark Gluon Plasma (QGP)
- Chiral anomaly leads to addition CP violating term in
 QCD
 Spectators
- No global P and CP violation experimentally observed in QCD, while it is theoretically possible
- Local P and CP violation also possible in QCD

What is the Chiral Magnetic Effect (CME)?

• A current in the direction of a magnetic field:

$$\vec{J} = \frac{e^2}{2\pi^2} \mu_5 \vec{B}$$

- Local P and CP violation is predicted to be possible
- Local domains in heavy ion collisions with chirality imbalance
- Strongest magnetic field in nature we know of ~10²⁰ Gauss

Observables and backgrounds

- Fourier decomposition of φ spectrum:
- $\frac{\mathrm{d}N}{\mathrm{d}\varphi_{\alpha}} = 1 + 2\sum_{n=1}^{\infty} a_{n,\alpha} \sin\left(n\left(\varphi \Psi_{RP}\right)\right) + v_{n,\alpha} \cos\left(n\left(\varphi \Psi_{n}\right)\right)$
- Coefficient a₁ quantifies the charge separation,
 v_n quantifies anisotropic flow
- $\gamma_{11}^{\alpha,\beta} = \left\langle \cos \left(\varphi_{\alpha} + \varphi_{\beta} 2\Psi_{RP} \right) \right\rangle$
- Opposite sign (OS) Same Sign (SS)

•
$$\Delta \gamma = \gamma_{\pm,\mp} - \gamma_{\pm,\pm} = 2 \langle a_1^2 \rangle + \Delta \gamma_{bkgd}$$

Backgrounds dominate

•
$$\Delta \gamma_{bkgd} \propto \frac{V_2}{N_{ch}}$$

- Ru-96 has 4 protons more than Zr-96
- $\left(\begin{array}{c} B_{Ru+Ru} / B_{Zr+Zr} \right)^2 1 = 0.10 0.18$ $\Delta \gamma_{Ru+Ru} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$ $\Delta \gamma_{Zr+Zr} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$

- Ru-96 has 4 protons more than Zr-96
- $\left(\begin{array}{c} B_{Ru+Ru} / B_{Zr+Zr} \right)^2 1 = 0.10 0.18$ $\Delta \gamma_{Ru+Ru} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$ $\Delta \gamma_{Zr+Zr} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$?

- Ru-96 has 4 protons more than Zr-96
- $\left(B_{Ru+Ru} / B_{Zr+Zr} \right)^2 1 = 0.10 0.18$
- $\Delta \gamma_{Ru+Ru} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$ $\Delta \gamma_{Zr+Zr} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$?

¹ <u>STAR collaboration, Search for the Chiral Magnetic Effect with Isobar</u> <u>Collisions at \$\sqrt{s_{NN}}\$ = 200 GeV by the STAR Collaboration at RHIC.</u>

- Ru-96 has 4 protons more than Zr-96
- $\left(\frac{B_{Ru+Ru}}{B_{Zr+Zr}}\right)^2 1 = 0.10 0.18$ • $\Delta \gamma_{Ru+Ru} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkad}$
- $\Delta \gamma_{Ru+Ru} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$ • $\Delta \gamma_{Zr+Zr} / v_2 = \Delta \gamma_{CME} + \Delta \gamma_{bkgd}$?

¹ <u>STAR collaboration, Search for the Chiral Magnetic Effect with Isobar</u> <u>Collisions at \$\sqrt{s {NN}}\$ = 200 GeV by the STAR Collaboration at RHIC</u>.

Caused by difference in nuclear structure Predefined criteria are invalid

¹ <u>STAR collaboration, Search for the Chiral Magnetic Effect with Isobar</u> <u>Collisions at \$\sqrt{s {NN}}\$ = 200 GeV by the STAR Collaboration at RHIC</u>.

Nuclear deformations and effect on observables

Jia, J., & Zhang, C.-J. (2021). Scaling approach to nuclear structure in high-energy heavy-ion collisions. *Physical Review C*, 107(2).

Jia, J. (2021). Shape of atomic nuclei in heavy ion collisions. Physical Review C, 105(1).

Isobar collisions at LHC energies?

- Investigate the use of isobar collisions of Ce-136 + Ce-136 and Xe-136 + Xe-136 at an energy of 5.02 TeV
- Bigger magnetic field compared to Ru-96 and Zr-96
- Magnetic field in Ce-136 is 10-15% larger than in Xe-136
- Nuclear structure from DFT calculations
- Smaller difference in nuclear structure
- Also take into account possible difference in multiplicity: $N_{ch} \Delta \gamma / v_2$

[€] ¹⁰ E ⁻			
) ² cos(2(Ψ _B -Ψ _{RI}	<mark>=</mark> Ce+Ce <mark>=</mark> Xe+Xe		
(eB/m [∞] (eB/m [∞])>			
5		/	
4 <u>–</u>			
3 E	I I]] .	
[∞] 0.1			1
0,E	10 20	30 40	50 60 70
			Centrality [%]

Species	β_2	eta_3	a	R_0
$^{96}_{44}\mathrm{Ru}$	0.162	0	$0.46~\mathrm{fm}$	$5.09~\mathrm{fm}$
$^{96}_{40}\mathrm{Zr}$	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~{ m fm}$
difference	$\Delta \beta_2^2$	$\Delta \beta_3^2$	Δa	ΔR_0
umerence	0.0226	-0.04	$-0.06~\mathrm{fm}$	$0.07~\mathrm{fm}$

$^{136}_{58}{ m Ce}$	0.17	0	$0.51~{ m fm}$	$5.78~\mathrm{fm}$
$^{136}_{54} { m Xe}$	0.086	0	$0.50~{\rm fm}$	$5.79~\mathrm{fm}$
difference	Δeta_2^2	Δeta_3^2	Δa	ΔR_0
umerence	0.022	0.0	$0.01~\mathrm{fm}$	$-0.01~\mathrm{fm}$

Simulations

A MultiPhase Transport model (AMPT)¹

- Based on a transport approach
- No magnetic field or CME
- Nuclear structure with deformations

Anomalous Viscous Fluid Dynamics (AVFD)²

- Based on hybrid approach (hydrodynamics and hadron cascade)
- CME current as a perturbation on top of bulk evolution
- Control the strength of CME with n_5/s
- Nuclear structure with deformations
- Controllable amount of background (Local Charge Conservation)

- MCGlauber (HIJING) → Lund string fragmentation → Parton Cascade (ZPC) → Quark Coalescence → Hadron Cascade (ART)
 ¹Lin, Z. W., Ko, C. M., Li, B. A., Zhang, B., & Pal, S. (2005). Multiphase transport model for relativistic heavy ion collisions. Physical Review C - Nuclear Physics, 72(6), 064901.
- MCGlauber \rightarrow Hydrodynamic expansion (VISH2+1D) \rightarrow Cooper Frye (iSS) \rightarrow Hadron Cascade (UrQMD)

² Shi, S., Jiang, Y., Lilleskov, E., & Liao, J. (2017). Anomalous Chiral Transport in Heavy Ion Collisions from Anomalous-Viscous Fluid Dynamics. Annals of Physics, 394, 50–72.

Datasets and analysis details

- AMPT: Impact parameter from 3 fm to 15 fm, 10⁵ collisions of Ce+Ce and Xe+Xe with and without deformations
- AVFD: 10⁵ collisions in 10% to 50% centrality in steps of 10% Ce+Ce and Xe+Xe with and without deformations
- AVFD tuned to describe correlations in Xe-129
- AVFD dataset to investigate the CME:

		Centrality			
Species	Settings	20-30%	30-40%	40-50%	50-60%
Ce+Ce	LCC and β_2 on	6.8×10^4	$8.0 imes 10^5$	$8.6 imes 10^5$	9.0×10^5
	LCC, n_5/s and β_2 on	$7.2 imes 10^4$	$7.9 imes 10^5$	$8.3 imes 10^5$	$8.8 imes 10^5$
Xe+Xe	LCC and β_2 on	7.0×10^4	$8.0 imes 10^5$	$8.6 imes 10^5$	$9.0 imes 10^5$
	LCC, n_5/s and β_2 on	$7.3 imes 10^4$	$8.0 imes10^5$	8.5×10^5	8.9×10^5

• Use particles with $|\eta|$ < 0.8 and 0.2 < p_T < 5 GeV/c

Christakoglou, P., Qiu, S., & Staa, J. (2021). Systematic study of the chiral magnetic effect with the AVFD model at LHC energies. *The European Physical Journal C 2021 81:8, 81*(8), 1–10.

Results - CME background from nuclear structure AMPT

Results - CME background from nuclear structure AMPT

Multiplicity is not significantly changed, elliptic flow changes mainly in central collisions in Ce

Results - Isobar ratio of v_2 in AMPT

Results - Isobar ratio of v_2 in AMPT

Results - γ correlator

• Use only positive-positive SS correlations due to incorrect implementation of LCC in AVFD

$$\Delta \gamma = \gamma_{\pm,\mp} - \gamma_{\pm,\pm} = 2 \left\langle a_1^2 \right\rangle + \Delta \gamma_{bkgd}$$

Results - γ correlator

• Use only positive-positive SS correlations due to incorrect implementation of LCC in AVFD

$$\Delta \gamma = \gamma_{\pm,\mp} - \gamma_{\pm,\pm} = 2 \left\langle a_1^2 \right\rangle + \Delta \gamma_{bkgd}$$

 $\Delta \gamma$ is enhanced by the CME signal, stronger in Ce

Results - Isobar ratio

• Rescale Δ_{γ} as: $N_{ch}\Delta_{\gamma}/v_2$ and take the ratio between the isobars

Results - Isobar ratio

• Rescale Δ_{γ} as: N_{ch} Δ_{γ}/v_2 and take the ratio between the isobars

Background baseline ~1 in $N_{ch}\Delta\gamma/v_2$, (14 ± 4)% stronger CME signal in Ce in $N_{ch}\Delta\gamma/v_2$

Significance of 3.2 σ

Results - Significance

• Fit of statistical uncertainties: $\frac{a}{N_{ev}^b}$

- CME signal: $a = (4 \pm 2) \times 10^7$ and $b = 1.36 \pm 0.04$
- Baseline: $a = (3 \pm 1) \times 10^4$ and $b = 0.91 \pm 0.02$
- Add systematic uncertainties

Results - Significance

- a Fit of statistical uncertainties: N^b
- CME signal: $a = (4 \pm 2) \times 10^7$ and $b = 1.36 \pm 0.04$
- Baseline: $a = (3 \pm 1) \times 10^4$ and $b = 0.91 \pm 0.02$
- Add systematic uncertainties

Total systematic uncertainty $[\%]$	$N_{\rm ev}$ and 1σ upper limit per isobar in 30-60% centrality for 5σ	Maximum significance
0.0	3.65M, 7.81M	-
0.22	3.66M, 7.83M	64.2
1.1	3.93M, 8.41M	12.8
2.2	5.58M, 11.9M	6.4
2.9	-	4.9

ev

Conclusion and outlook

- Small difference in nuclear structure between Ce-136 and Xe-136
- Enhancement of elliptic flow for central events in Ce-136
- (14 ± 4)% stronger CME signal in Ce-136 compared to Xe-136 in $\Delta\gamma$
- Total systematic uncertainty needs to be smaller than 2.9%
- 5.58M to 11.9M events per isobar needed for 5 σ significance

Conclusion and outlook

- Small difference in nuclear structure between Ce-136 and Xe-136
- Enhancement of elliptic flow for central events in Ce-136
- (14 ± 4)% stronger CME signal in Ce-136 compared to Xe-136 in $\Delta \gamma$
- Total systematic uncertainty needs to be smaller than 2.9%
- 5.58M to 11.9M events per isobar needed for 5 σ significance
- Improvement of LCC in AVFD
- Isobars can be used to probe nuclear structure and initial conditions
- Use other observables for background baseline in a data-driven way

$$R_{\mathcal{O}} = \frac{\mathcal{O}_{X+X}}{\mathcal{O}_{Y+Y}} \approx 1 + c_{1} \Delta \beta_{2}^{2} + c_{2} \Delta \beta_{3}^{2} + c_{3} \Delta R_{0} + c_{4} \Delta a$$

Backgrounds CME

Local Charge Conservation (LCC) coupled to elliptic flow

Backgrounds and the CME signal

Local Charge Conservation (LCC) coupled to elliptic flow

Results - PP and PP+NN SS correlations

Big difference in PP and NN correlations

Simulations

- Based on a transport approach
- No magnetic field or CME
- Nuclear structure with deformations

MCGlauber (HIJING) \rightarrow Lund string fragmentation \rightarrow Parton Cascade (ZPC) \rightarrow Quark Coalescence \rightarrow Hadron Cascade (ART)

A MultiPhase Transport model (AMPT) Anomalous Viscous Fluid Dynamics (AVFD)

Journal C 2021 81:8, 81(8), 1-10.

$\Delta\delta$ results

Results - CME background from nuclear structure AVFD

Results - Isobar ratios in AMPT

Isobar ratios AVFD

AMPT mean Pt results

AMPT

AVFD mean Pt results

AVFD multiplicity and flow

Correlators

$$\begin{split} \gamma_{11}^{\alpha,\beta} &= \langle \cos((\varphi_{\alpha} - \Psi_{\rm RP}) + (\varphi_{\beta} - \Psi_{\rm RP})) \rangle \\ &= \langle \cos(\Delta\varphi_{\alpha} + \Delta\varphi_{\beta}) \rangle \\ &= \langle \cos\Delta\varphi_{\alpha}\cos\Delta\varphi_{\beta} \rangle - \langle \sin\Delta\varphi_{\alpha}\sin\Delta\varphi_{\beta} \rangle \\ &= \langle v_{1,\alpha}v_{1,\beta} \rangle + {\rm B}_{\rm in} - \langle a_{1,\alpha}a_{1,\beta} \rangle - {\rm B}_{\rm out}, \end{split}$$
$$\delta_{1}^{\alpha,\beta} &= \langle \cos((\varphi_{\alpha} - \varphi_{\beta})) \rangle \\ &= \langle \cos((\varphi_{\alpha} - \Psi_{\rm RP}) - (\varphi_{\beta} - \Psi_{\rm RP})) \rangle \\ &= \langle \cos(\Delta\varphi_{\alpha} - \Delta\varphi_{\beta}) \rangle \\ &= \langle \cos\Delta\varphi_{\alpha}\cos\Delta\varphi_{\beta} \rangle + \langle \sin\Delta\varphi_{\alpha}\sin\Delta\varphi_{\beta} \rangle \\ &= \langle v_{1,\alpha}v_{1,\beta} \rangle + {\rm B}_{\rm in} + \langle a_{1,\alpha}a_{1,\beta} \rangle + {\rm B}_{\rm out}. \end{split}$$

Anisotropic flow

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi_{\alpha}} = 1 + 2\sum_{n=1}^{\infty} a_{n,\alpha} \sin\left(n\left(\varphi - \Psi_{RP}\right)\right) + v_{n,\alpha} \cos\left(n\left(\varphi - \Psi_{n}\right)\right)$$

ESE

•
$$q_2 = \frac{|Q_2|}{\sqrt{M}}$$

 $Q_{n,m} = \sum_{j=1}^{N_{\rm ch}} w_j^m e^{in\varphi_j},$

41

ESE - Only LCC

Ce136, PP, LCC

ESE - Only LCC

Ce136, PP, LCC

Xe136, PP, LCC

ESE - Only LCC

ESE - LCC +
$$n_5/s$$

Ce136, PP, LCC+n5/s

ESE - LCC + n_{s}/s

Ce136, PP_NN, LCC

ESE - LCC + n_{s}/s

Ce136, PP, LCC+n5/s

ESE - LCC +
$$n_5/s$$

