Nik hef

Searching for new physics using W & Z bosons

Dylan van Arneman

NNV (astro)particle physics fall meeting November 2023

UNIVERSITY OF AMSTERDAM Institute of Physics

Overview

Two main parts:

- General introduction and overview of the analysis
- My main contribution: the background estimation

INSTITUTE OF PHYSICS

w of the analysis

Part I: Resonance search overview

INSTITUTE OF PHYSICS

NNV - November 2023

 Searching for the resonant production of some new heavy (~TeV) particle

- Searching for the resonant production of some new heavy (~TeV) particle
- We don't expect this new particle to live long
 Decays into daughter particles quickly

- Searching for the resonant production of some new heavy (\sim TeV) particle *q/g*
- We don't expect this new particle to live long
 - Decays into daughter particles quickly

X (\overline{q}/g)

Choose to focus on decay into a pair of vector bosons (=W or Z)

- Searching for the resonant production of some new heavy (~TeV) particle $\sqrt{q/g} = \frac{W/Z}{W/Z}$
- We don't expect this new particle to live long
 - Decays into daughter particles quickly $\sqrt{\frac{q}{g}}$ $w/2^2$
 - Choose to focus on decay into a pair of vector bosons (=W or Z)
- Why dibosons?
 - As spin-1 particles, pairs of EW bosons have a wide range of possible interactions
 - Pairs of V-bosons can interact with new particle X of spin-0 (Radion), spin-1 (HVT) or spin-2 (RS Graviton)

X

Nikhef

• The W/Z bosons also decay quick There are a few options:

INSTITUTE OF PHYSICS

There are a few options: Look at W/Z boson decay fully into hadrons

INSTITUTE OF PHYSICS

- There are a few options:
 - Look at W/Z boson decay fully into hadrons
 - Look at W/Z boson decay fully into leptons

INSTITUTE OF PHYSICS

- The W/Z bosons also decay quick There are a few options:
 - Look at W/Z boson decay fully into hadrons
 - Look at W/Z boson decay fully into leptons
 - A combination (1 boson decays hadronically, 1 into leptons)

INSTITUTE OF PHYSICS

- There are a few options:
 - Look at W/Z boson decay fully into hadrons
 - Look at W/Z boson decay fully into leptons
 - A combination (1 boson decays hadronically, 1 into leptons)
 - I study the *fully hadronic* channel
 - hadrons

INSTITUTE OF PHYSICS

• The W/Z bosons also decay quickly, so we do not detect them directly

 \rightarrow Jargon: "jet" \rightarrow a quark or gluon that hadronizes into a cone of more

Why a fully hadronic final state?

- High-energy diboson interactions are rare, so we need to maximise statistical power

Want to study diboson interactions at the highest possible energy scale

Why a fully hadronic final state?

- High-energy diboson interactions are rare, so we need to maximise statistical power

• Want to study diboson interactions at the highest possible energy scale

14 UvA

Why a fully hadronic final state?

- High-energy diboson interactions are rare, so we need to maximise statistical power

Major challenge:

 Lots of <u>QCD multijet</u> background in this channel Jets coming from different (SM) processes

D. van Arneman

Want to study diboson interactions at the highest possible energy scale

NNV - November 2023

Nik

Lots of <u>QCD multijet</u> background in this channel
 Jets coming from different processes

Lots of <u>QCD multijet</u> background in this channel

• Two examples:

9

Jets coming from different processes

decay into a pair of quarks

Since X is so heavy, the Vs will be strongly boosted

• The signal: some heavy particle X decays into two V-bosons which each

decay into a pair of quarks

- Ultimately forming two large-R jets in total

• The signal: some heavy particle X decays into two V-bosons which each

- into two of large-R jets
- 6 TeV

D. van Arneman

• The signal: some heavy particle X decays into two V-bosons which decay

• What we want to see: two large-R jets with a combined invariant mass 2

Resonant signal Analysis background

Di-large-jet mass (log-axis)

- M(JJ) = 4.4 TeV into **two of** Run: 338846 Event: 2998836394
- What we wa - 6 TeV

2017-10-01 21:17:47 UTC

• The signal: some heavy narticle Y decays into two V-hosons which decay

variant mass 2

onant signal is background

Di-large-jet mass (log-axis)

NNV - November 2023

- into two of large-R jets (=dibosons)
- **Expect the signal to** What we wa look like a resonance - 6 TeV peak

• The signal: some heavy particle X decays into two V-bosons which decay

ets with a combined invariant mass 2

Resonant signal Analysis background

Di-large-jet mass (log-axis)

- into two of large-R jets (=dibosons)
- 6 TeV

D. van Arneman

Diboson searches: major challenge

- QCD background is dominant
 - \rightarrow The cross section of proton-proton -> 2 jets is **3 orders of magnitude** bigger than proton-proton -> 2 V
 - Means we will have a huge background

• Since we are working with a fully hadronic final state, standard model

Diboson searches: major challenge

- Since we are working with a fully hadronic final state, standard model QCD background is dominant
 - \rightarrow The cross section of proton-proton -> 2 jets is **3 orders of magnitude** bigger than proton-proton -> 2 V
 - Means we will have a huge background
 - Need to find some way to keep our bkg under control

Part II (a): Estimating the QCD background

INSTITUTE OF PHYSICS

NNV - November 2023

Background estimation

- Since high-energy QCD is non-perturbative, it is very difficult to predict and model
- Typically there are two options: MC simulations or data driven Not possible to do MC simulations for QCD

 - A data driven method is much more reliable for QCD

Data driven: ABCD Method

control regions

• Idea: estimate background contribution in signal region by looking at

- control regions
 - Split your data up into region(s) where you expect signal to be present (= SR) and where you expect signal to be absent (= CR)

29 UvA

- control regions
 - Split your data up into region(s) where you expect signal to be present (= SR) and where you expect signal to be absent (= CR)

Data driven: ABCD Method

- control regions
 - Split your data up into region(s) where you expect signal to be present (= SR) and where you expect signal to be absent (= CR)

- control regions
 - Split your data up into region(s) where you expect signal to be present (= SR) and where you expect signal to be absent (= CR)

- control regions
 - Split your data up into region(s) where you expect signal to be present (= SR) and where you expect signal to be absent (= CR)

- control regions
 - Split your data up into region(s) where you expect signal to be present (= SR) and where you expect signal to be absent (= CR)

Ideal scenario where you know exactly what each event is

Data driven: ABCD Method

control regions

What do you do if you don't know whether an event is signal or background?

35 UvA

Data driven: ABCD Method

- control regions
- If the parameters chosen for the y-& x-axis are **not correlated**, and if your signal region is well defined You can say:

$$\Rightarrow \frac{A}{B} = \frac{C}{D}$$
 (For # background eve

$$\Rightarrow A = B \times \frac{C}{D}$$

Now you can estimate # bkg events in SR by only looking at control regions

36 UvA

NNV - November 2023

ABCD Method: Our Case

D. van Arneman

D. van Arneman

INSTITUTE OF PHYSICS

Part II (b): Final Estimate

NNV - November 2023

• We have the machinery ready, now need to see if it works properly (= validation)

- We have the setup and machinery ready, now need to see if it works properly (= validation)
- First try out the method on MC simulations to see if it delivers consistent results:
 - Use MC control regions as input for ABCD (and see if it returns the same SR output as 'raw' MC)
 - Consistency check

- We have the setup and machinery ready, now need to see if it works properly (= validation)
- First try out the method on MC simulations to see if it delivers consistent results:
 - Use MC control regions as input for ABCD (and see if it returns the same SR output as 'raw' MC)

Consistency check

We find good agreement between MC and ABCD

Now apply the method on data

Expected sensitivity

- Given this background estimate, these are the cross sections excl [fb] we can probe
 - Might be sensitive to BSM signal?
 - Have to look at data!

INSTITUTE OF PHYSICS

NNV - November 2023

- W/Z bosons good probe for new physics
- Overcome QCD hurdle by using ABCD method
- Now that we have our background fully under control we can move onto the next steps
 - Move towards unblinding (i.e. look at data in the signal region, compare with bkg to see if there is any new physics)

Summary & Conclusion

Backup

NNV - November 2023

- Since we are working with a fully hadronic final state, QCD background is dominant
 - Need to find some way to keep our bkg under control

Background ABCD setup

Strategy 1006		Jet 1	Jet 2
HPHP			
	А	HP, MW	HP, MW
	В	QCD, MW	HP, MW
	С	HP, LSB HP, HSB	HP, MW
	D	QCD, LSB QCD, HSB	HP, MW
HPLP			
	А	HP, MW	LP, MW
	В	HP, MW	QCD, MW
	С	HP, MW	LP, LSB LP, HSB
	D	HP, MW	QCD, LSB QCD, HSB
LPHP			
	А	LP, MW	HP, MW
	В	QCD, MW	HP, MW
	С	LP, LSB LP, HSB	HP, MW
	D	QCD, LSB QCD, HSB	HP, MW

D. van Arneman

Mass Window

Input for tagger algorithm

- Low-level: jet constituents
- jet substructure variables)
- Jet mass
- Output: mass decorrelated score

High-level: jet variables (ntracks, energy distribution within the jet, other

CMS result

- Our results are not public yet, but CMS has released theirs
 - \rightarrow They find a 3.6 σ local excess at 2.1 TeV and 2.9 TeV (2.3 σ global)
 - Good motivation to keep looking at this channel!

