A moving detector Dynamical position and orientation calibration of the KM3NeT telescope

> Clara Gatius Oliver cgatius@nikhef.nl November 3rd 2023, NNV Lunteren

> > KM3Ne¹

Niklhef

The KM3NeT telescope

2

A moving detector...

Detection units sway with the deep sea currents

continuous tracking of optical module positions and orientations required

- To not compromise envisaged angular resolution → KM3NeT/ARCA 0.05 deg (highest energy events)
- o To not compromise the event reconstruction quality

Acoustic position calibration

Autonomous acoustic emitters (~ 10 emissions / 10 min)

Emitters on base modules or junction boxes

 $(\sim 1 \text{ emission} / 30 \text{ sec})$

Acoustic position calibration

Autonomous acoustic emitters (~ 10 emissions / 10 min)

Emitters on base modules or junction boxes

(~ 1 emission / 30 sec)

- o Different signal frequency for each emitter
- o Correlate acoustic raw data with signal template

 \rightarrow ID emitter, time-of-arrival signal

Acoustic fit

Acoustic fit

Model of the detector geometry fitted to the acoustic data

$$t_{A}^{c}[i,j] = t_{E}^{c} + |\vec{x}_{0}[i] + \Delta \vec{x}[i,j] - \vec{x}^{c} | v^{-1}$$

$$\Delta x[i,j] = T_{x}[i]z'[i,j] + T_{x}^{(2)}[i](z_{0}[i,j])^{2}$$

$$\Delta y[i,j] = T_{y}[i]z'[i,j] + T_{y}^{(2)}[i](z_{0}[i,j])^{2}$$

$$\Delta z[i,j] = f^{-1}((1 + \alpha[i])z_{0}[i,j])$$

Tilt vector: Mechanical model: $\hat{T} = (T_x, T_y, (1 - T_x^2 - T_y^2)^{1/2}) \quad z' = (1 + \alpha) \ z_0 + b \log(1 - \alpha \ (1 + \alpha) \ z_0)$

What do we fit? \rightarrow

$$t_E^c$$
Time-of-emission T_x, T_y Tilt of the DU $T_x^{(2)}, T_y^{(2)}$ Second order corrections to the tilt $1 + \alpha$ Stretching of the DU

Acoustic fit

Model of the detector geometry fitted to the acoustic data

$$t_{A}^{c}[i,j] = t_{E}^{c} + |\vec{x}_{0}[i] + \Delta \vec{x}[i,j] - \vec{x}^{c} | v^{-1}$$

$$\Delta x[i,j] = T_{x}[i]z'[i,j] + T_{x}^{(2)}[i](z_{0}[i,j])^{2}$$

$$\Delta y[i,j] = T_{y}[i]z'[i,j] + T_{y}^{(2)}[i](z_{0}[i,j])^{2}$$

$$\Delta z[i,j] = f^{-1}((1 + \alpha[i])z_{0}[i,j])$$

Tilt vector:

Mechanical model: $\hat{T} = (T_x, T_y, (1 - T_x^2 - T_y^2)^{1/2}) \quad z' = (1 + \alpha) z_0 + b \log(1 - a (1 + \alpha) z_0)$

What do we fit? \rightarrow

 \vec{x}_0 DU position on the sea bed Nominal height of each DOM in the DU Z_0 \vec{x}^c Emitter position on the sea bed

- 4 months of data
- Coherent movement between detection units
- Highest tilts measured so far $\sim 5.7 \text{ deg}$ (see additional slides)

coherent movement between the

detection units and sea current speed

10

•

and direction

- Stretching over time for \sim 3 months of data
- Creep of the Dyneema[®] ropes of the newly deployed detection units, up to ~ 60 cm

- Stretching over time for \sim 3 months of data
- Creep of the Dyneema[®] ropes of the newly deployed detection units, up to ~ 60 cm

- Residuals of the acoustic fit for 1 detection unit (lower module = 1, top module = 18)
- Residuals contained within ±100 μs (~ 15 cm)

Orientation calibration

Magnetometer and accelerometer in each → Continuous data taking every 10 sec optical module (a.k.a. "compass")

After some corrections (Correction for magnetic declination and meridian convergence angle + in-lab calibration)

Conversion to **quaternions**

 $Q \equiv (\cos (\theta/2), \sin (\theta/2)\hat{u})$

 $Q_0[i] \quad Q_0[i+1]$

Orientation calibration

twist $Q_1^{z_j}[i]$ $Q_0[i] \quad Q_0[i+1]$ Magnetometer and accelerometer in each → Continuous data taking every 10 sec optical module (a.k.a. "compass")

> After some corrections (Correction for magnetic declination and meridian convergence angle + in-lab calibration)

> > Conversion to **quaternions** $Q \equiv (\cos{(\theta/2)}, \sin{(\theta/2)}\hat{u})$

Static calibration: alignment of the optical modules of each detection unit during a period in which the sea current is low

Model of the DU twist fitted to the compass data for each DU (every 5 min)

$$Q = Q_0 \; Q_1^{z_j}$$
 , $\begin{array}{c} Q_0 : \mbox{Tilt DU} \\ Q_1^{z_j} : \mbox{Twist DOM} \end{array}$

Dynamic orientation calibration

Orientation updated very 5 min

- Optical modules move coherently among themselves
- as well as with the tilt derived from the acoustic data and the sea current measurements

Final check of the calibration \rightarrow muon calibration

Muon calibration \rightarrow exploits muon track reconstruction to find optimal orientation and position of the optical modules.

• Positions agree with the muon calibration within a range of ±10 cm

boxes \equiv 50% of entries (between 1st and 3rd quartiles) whiskers \equiv minimum and maximum values

Final check of the calibration \rightarrow muon calibration

Muon calibration \rightarrow exploits muon track reconstruction to find optimal orientation and position of the optical modules.

• Orientations show an agreement within a range of less than ±3 deg

Plots for 5000 consecutive events boxes \equiv 50% of entries (between 1st and 3rd quartiles) whiskers \equiv minimum and maximum values

Conclusion

- Acoustic positioning method in place to determine optical module positions
- Method to calibrate orientations of the optical modules in-situ and determine their dynamic orientation
- Methods agree with the muon calibration technique:
 - Positions ± 10 cm
 - Orientations ± 3 deg
- Agreement within required specifications to achieve:
 - Envisaged angular resolution of the KM3NeT/ARCA telescope of 0.05 deg
 - Not compromise event reconstruction quality

KM3NeT calibration is ready to point back at neutrino sources!

Additional slides: Dynamic position calibration

KM3NeT/ARCA (21 detection units)

• Highest tilts measured so far $\sim 5.7 \deg$

Additional slides: acoustic fit

Model of the detector geometry fitted to the acoustic data (every 10 min) $t_{A}^{c}[i,j] = t_{E}^{c} + |\vec{x}_{0}[i] + \Delta \vec{x}[i,j] - \vec{x}^{c} | v^{-1}$ Number of data points: $n_{p} = \sum_{i=1}^{M} n_{i} \cdot N \cdot 18$ Number of free parameters: $n_{f} = \sum_{i=1}^{M} n_{i} + 5N$ m = # emitters N = # DUS $n_{i} = \# \text{ emissions in 10 min}$ $\chi^{2} = \frac{\sum_{n_{p}} (t_{A}^{measured} - t_{A}^{modelled})}{\sigma}$, $\sigma = 50 \ \mu s \ (\sim 8 \ cm)$