A moving detector

Dynamical position and orientation calibration of the

The KM3NeT telescope

Digital Optical Module (DOM)
31 PMTs, electronics, acoustic sensor, magnetometer and accelerometer

Sketch by Isis Hobus

Detection Unit 18 DOMs

Building block 115 Detection Units
x1 KM3NeT/ORCA (atmospheric neutrino oscillations research, GeV -TeV energy)
x2 KM3NeT/ARCA (astrophysical neutrinos research, TeV-PeV energy)

A moving detector...

Detection units sway with the deep sea currents

If the telescope doesn't point in the direction we think is pointing to...
... we mistake the neutrino source

continuous tracking of optical module positions and orientations required

- To not compromise envisaged angular resolution \rightarrow KM3NeT/ARCA 0.05 deg (highest energy events)
- To not compromise the event reconstruction quality

Acoustic position calibration

Emitters on base modules or junction boxes
(~ 1 emission $/ 30 \mathrm{sec}$)

Acoustic position calibration

Emitters on base modules or junction boxes
(~ 1 emission / 30 sec)

- Different signal frequency for each emitter
- Correlate acoustic raw data with signal template
\rightarrow ID emitter, time-of-arrival signal

Acoustic fit

Model of the detector geometry fitted to the acoustic data every 10 min

$$
t_{A}^{c}[i, j]=t_{E}^{c}+\left|\vec{x}_{0}[i]+\Delta \vec{x}[i, j]-\vec{x}^{c}\right| v^{-1}
$$

time-of-arrival
time-of-emission
distance
speed of sound

Acoustic fit

Model of the detector geometry fitted to the acoustic data

$$
\begin{aligned}
t_{A}^{c}[i, j] & =\overbrace{E}^{c}+\left|\vec{x}_{0}[i]+\Delta \vec{x}[i, j]-\vec{x}^{c}\right| v^{-1} \\
& \Delta x[i, j]=T_{x}[i] z^{\prime}[i, j]+T_{x}^{(2)}[i]\left(z_{0}[i, j]\right)^{2} \\
& \Delta y[i, j]=T_{y}[i] z^{\prime}[i, j]+T_{y}^{(2)}[i]\left(z_{0}[i, j]\right)^{2} \\
& \Delta z[i, j]=f^{-1}\left((1+\alpha[i]) z_{0}[i, j]\right)
\end{aligned}
$$

Tilt vector:
Mechanical model:
$\hat{T}=\left(T_{x}, T_{y},\left(1-T_{x}^{2}-T_{y}^{2}\right)^{1 / 2}\right) \quad z^{\prime}=(1+\alpha) z_{0}+b \log \left(1-a(1+\alpha) z_{0}\right)$

What do we fit? $\rightarrow \underset{\text { (fit every } 10 \mathrm{~min})}{\text { Dynamic parameters }}\left\{\begin{array}{lll}t_{E}^{c} & \text { Time-of-emission } \\ T_{x}, T_{y} & \text { Tilt of the DU } \\ T_{x}^{(2)}, T_{y}^{(2)} & \text { Second order corrections to the tilt } \\ 1+\alpha & \text { Stretching of the DU }\end{array}\right.$

Acoustic fit

Model of the detector geometry fitted to the acoustic data

$$
\begin{aligned}
t_{A}^{c}[i, j] & =t_{E}^{c}+\left|\vec{x}_{0}[i]+\Delta \vec{x}[i, j]-\vec{x}^{c}\right| v^{-1} \\
& \Delta x[i, j]=T_{x}[i] z^{\prime}[i, j]+T_{x}^{(2)}[i]\left(z_{0}[i, j]\right)^{2} \\
& \Delta y[i, j]=T_{y}[i] z^{\prime}[i, j]+T_{y}^{(2)}[i]\left(z_{0}[i, j]\right)^{2} \\
& \Delta z[i, j]=f^{-1}\left((1+\alpha[i]) z_{0}[i, j]\right)
\end{aligned}
$$

Tilt vector:
Mechanical model:
$\hat{T}=\left(T_{x}, T_{y},\left(1-T_{x}^{2}-T_{y}^{2}\right)^{1 / 2}\right) \quad z^{\prime}=(1+\alpha) z_{0}+b \log \left(1-a(1+\alpha) z_{0}\right)$

What do we fit? $\quad \rightarrow \quad$ static parameters

(fitted once)

Dynamic position calibration

From acoustic data

KM3NeT/ORCA (6 detection units)

- 4 months of data
- Coherent movement between detection units
- Highest tilts measured so far ~ 5.7 deg (see additional slides)

Dynamic position calibration

From acoustic data

Independent sea current measurement

- coherent movement between the detection units and sea current speed and direction

Dynamic position calibration

KM3NeT/ARCA (6 detection units)

- Stretching over time for ~ 3 months of data
- Creep of the Dyneema ${ }^{\circledR}$ ropes of the newly deployed detection units, up to $\sim 60 \mathrm{~cm}$

Dynamic position calibration

- Stretching over time for ~ 3 months of data
- Creep of the Dyneema ${ }^{\circledR}$ ropes of the newly deployed detection units, up to $\sim 60 \mathrm{~cm}$
- Residuals of the acoustic fit for 1 detection unit (lower module $=1$, top module $=18$)
- Residuals contained within $\pm 100 \mu s(\sim 15 \mathrm{~cm})$

Orientation calibration

Magnetometer and accelerometer in each \rightarrow Continuous data taking every 10 sec optical module (a.k.a. "compass")

After some corrections
(Correction for magnetic declination and meridian convergence angle + in-lab calibration)
Conversion to quaternions
$Q \equiv(\cos (\theta / 2), \sin (\theta / 2) \hat{u})$

Orientation calibration

Magnetometer and accelerometer in each \rightarrow Continuous data taking every 10 sec
optical module (a.k.a. "compass")
After some corrections
(Correction for magnetic declination and meridian convergence angle + in-lab calibration)
Conversion to quaternions

$$
Q \equiv(\cos (\theta / 2), \sin (\theta / 2) \hat{u})
$$

Static calibration: alignment of the optical modules of each detection unit during a period in which the sea current is low

Model of the DU twist fitted to the compass data
for each DU (every 5 min)

$$
Q=Q_{0} Q_{1}^{z_{j}}
$$

$$
Q_{0}: \text { Tilt DU }
$$

$$
Q_{1}^{z_{j}}: \text { Twist DOM J }
$$

Dynamic orientation calibration

Orientation updated very 5 min

- Optical modules move coherently among themselves
- as well as with the tilt derived from the acoustic data and the sea current measurements

Independent
sea current measurement

From acoustic

Compass

Final check of the calibration \rightarrow muon calibration

Muon calibration \longrightarrow exploits muon track reconstruction to find optimal orientation and position of the optical modules.

- Positions agree with the muon calibration within a range of $\pm 10 \mathrm{~cm}$

Plots for 5000 consecutive events
boxes $\equiv 50 \%$ of entries (between $1^{\text {st }}$ and 3rd quartiles)
whiskers \equiv minimum and maximum values

Final check of the calibration \rightarrow muon calibration

Muon calibration \longrightarrow exploits muon track reconstruction to find optimal orientation and position of the optical modules.

- Orientations show an agreement within a range of less than ± 3 deg

Plots for 5000 consecutive events
boxes $\equiv 50 \%$ of entries (between $1^{\text {st }}$ and 3 rd quartiles)
whiskers \equiv minimum and maximum values

Conclusion

- Acoustic positioning method in place to determine optical module positions
- Method to calibrate orientations of the optical modules in-situ-and determine their dynamic-orientation
- Methods agree with the muon calibration technique:
- Positions $\pm 10 \mathrm{~cm}$
- Orientations ± 3 deg
- Agreement within required specifications to achieeve
- Envisaged angular resolution of the KM3NeT/ARCA telescope of 0.05 deg
- Not compromise event reconstruction quality

KM3NeT calibration is ready to point back at neutrino sources!

For more details see PoS(ICRC2023)1033

Additional slides: Dynamic position calibration

KM3NeT/ARCA (21 detection units)

- Highest tilts measured so far $\sim 5.7 \mathrm{deg}$

Additional slides: acoustic fit

Model of the detector geometry fitted to the acoustic data
(every 10 min)

$$
t_{A}^{c}[i, j]=t_{E}^{c}+\left|\vec{x}_{0}[i]+\Delta \vec{x}[i, j]-\vec{x}^{c}\right| v^{-1}
$$

Number of data points: $n_{p}=\sum_{i=1}^{M} n_{i} \cdot N \cdot 18$
M = \# emitters

$$
N=\# D U s
$$

Number of free parameters: $n_{f}=\sum_{i=1}^{M} n_{i}+5 N$

$$
n_{i}=\# \text { emissions in } 10 \mathrm{~min}
$$

$$
\chi^{2}=\frac{\sum_{n_{p}}\left(t_{A}^{\text {measured }}-t_{A}^{\text {modelled }}\right)}{\sigma}, \sigma=50 \mu s(\sim 8 \mathrm{~cm})
$$

