Measurement of jet quenching cone-size ALICE dependence in pp and Pb–Pb collisions with ALICE

PRESENTATION BY CHRISTOS PLIATSKAS STYLIANIDIS, NNV MEETING

NOVEMBER 3RD 2023,LUNTEREN

NNV MEETING 2023, LUNTEREN

Heavy Ion collisions and Quark Gluon Plasma (QGP)

arXiv:2208.05290 [nucl-ex]

Jets as witnesses of QGP evolution

- > Heavy ion collisions produce:
 - Hot and dense medium of deconfined matter
 - High energy partons as a result of hard scattering

Jets as witnesses of QGP evolution

- > Heavy ion collisions produce:
 - Hot and dense medium of deconfined matter
 - High energy partons as a result of hard scattering
- Parton energy loss due to its interaction with the medium
 - Through collisions
 - Through gluon radiation

Jets as witnesses of QGP evolution

- > Heavy ion collisions produce:
 - Hot and dense medium of deconfined matter
 - High energy partons as a result of hard scattering
- Parton energy loss due to its interaction with the medium
 - Through collisions
 - Through gluon radiation
- ➤ Cluster parton shower products → jets

What is "jet quenching"?

Vacuum

What is "jet quenching"?

"Jet quenching" can have many aspects...

Medium-induced energy loss

"Jet quenching" can have many aspects...

"Jet quenching" can have many aspects...

Nuclear modification factor R_{AA}

Nuclear modification factor R_{AA}

 $R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{d^2 N / dp_T d\eta}{d^2 \sigma_{pp} / dp_T d\eta}$

Measurement of R_{AA} with ALICE

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{d^2 N / dp_T d\eta}{d^2 \sigma_{pp} / dp_T d\eta}$$

ALICE: https://arxiv.org/abs/2303.00592

Measurement of R_{AA} with ALICE

Are large jets more quenched?

Sketch: QM19, Yi Chen

Are large jets more quenched?

Sketch: QM19, Yi Chen

Are large jets more quenched?

ALICE: https://arxiv.org/abs/2303.00592

R increases

ALICE: https://arxiv.org/abs/2303.00592

Sketch: QM19, Yi Chen

Energy flow definition: $\Delta p_{T} = p_{T} (R_{i+1}) - p_{T} (R_{i})$

Sketch: QM19, Yi Chen

Energy flow definition:
$$\Delta p_{T} = p_{T} (R_{i+1}) - p_{T} (R_{i})$$

Using a measurement in pp as baseline, study the effect of the energy loss mechanisms in Pb–Pb

Energy flow definition: $\Delta p_{T} = p_{T} (R_{i+1}) - p_{T} (R_{i})$

Using a measurement in pp as baseline, study the effect of the energy loss mechanisms in Pb–Pb

- > Distinct peak at $\Delta p_{T} = 0$.
- > Larger $R \rightarrow$ Steeper distributions
- Smooth transition from narrow to wide jet cone radii.

- > Distinct peak at $\Delta p_{T} = 0$.
- > Larger $R \rightarrow$ Steeper distributions
- Smooth transition from narrow to wide jet cone radii.

- > Distinct peak at $\Delta p_{T} = 0$.
- > Larger $R \rightarrow$ Steeper distributions
- Smooth transition from narrow to wide jet cone radii.

- > Distinct peak at $\Delta p_{T} = 0$.
- > Larger $R \rightarrow$ Steeper distributions
- Smooth transition from narrow to wide jet cone radii.

- > Distinct peak at $\Delta p_{T} = 0$.
- > Larger $R \rightarrow$ Steeper distributions
- Smooth transition from narrow to wide jet cone radii.

- > Distinct peak at $\Delta p_{T} = 0$.
- > Larger $R \rightarrow$ Steeper distributions
- Smooth transition from narrow to wide jet cone radii.

ALI-PREL-540106

R increases

- > Distinct peak at $\Delta p_{T} = 0$.
- > Larger $R \rightarrow$ Steeper distributions

Smooth transition from narrow to wide jet cone radii.

ALI-PREL-540106

Mean energy flow rapidly decreases as function of *R*

Good description of the measurement by both HERWIG and PYTHIA

Model predictions for HI measurement

Observable is sensitive to recoil effects.

 \rightarrow JEWEL Δp_{T} prediction in vacuum >> ALICE pp measurement.

Disagreement in vacuum predictions impedes interpretation for JEWEL AA simulations.

ALI-PREL-551131

Model predictions for HI measurement

> JEWEL predictions for jet quenching:

- Recoil effects → Recovery of energy at large R.
- No recoil effects → Narrower jet energy profile

Summary & Outlook

> Jets serve as excellent probes for the study of the QGP medium dynamics.

- > R_{AA} measurements clearly demonstrate jet quenching in HI collisions.
- > Cone-size dependence of jet quenching is sensitive to competing effects.
 - Measurements of R_{AA} show hints of decrease at large jets in low momenta.

> Novel jet energy flow observable and its measurement in pp collisions presented.

- Mean jet energy flow monotonically decreases as a function of R
- Model predictions showcase the sensitivity of the observable to recoil effects in the medium.
- > Jet energy flow measurement in ALICE Pb-Pb data is on the way.

Backup

R dependence of jet nuclear modification factor – Models

ALICE: https://arxiv.org/abs/2303.00592

Matching/Tagging procedure

let energy flow distributions: iet n- dependence

Good description of the measurement by both HERWIG and PYTHIA

