

Optimization of HLT2 selection algorithms at the LHCb experiment

Daniel Magdalinski 3 November 2023

LHCb experiment at CERN

- LHC: Circular particle accelerator at CERN
- 4 main experiments:
 - o CMS
 - ALICE
 - o ATLAS
 - o LHCb

LHCb experiment

- Forward spectrometer designed for flavour physics through beauty and charm decays.
- Detector upgraded for Run 3 to handle increased luminosity
 - Changes to nearly all subsystems
- Flexible full-software trigger system enables a more general physics program

- 30 MHz/4TB/s detector read-out \rightarrow 10 GB/s data storage
- HLT1:
 - GPU-based algorithms focused on tracks, displaced decay vertices and muons
- Alignment & Calibration
 - Event buffer between HLT1 and HLT2
 - Real-time alignment and calibration giving offline-level reconstruction to HLT2

- 30 MHz/4TB/s detector read-out \rightarrow 10 GB/s data storage
- HLT1:
 - GPU-based algorithms focused on tracks, displaced decay vertices and muons
- Alignment & Calibration
 - Event buffer between HLT1 and HLT2
 - Real-time alignment and calibration giving offline-level reconstruction to HLT2

HLT2:

Selections of physics object for analysis through trigger lines

Selective persistence:

- Option to save partial event information only relevant for analysis
- o Enables us to do much more physics with the same disk space

- HLT2:
 - Selections of physics object for analysis through trigger lines
- Selective persistence:
 - Option to save partial event information only relevant for analysis
 - o Enables us to do much more physics with the same disk space

Motivation for optimization

- Luminosity increasing at LHC → more complicated events
 - Computation costs will increase
- LHC experiments are resource limited
 - There is more physics to analyze in the events

Why optimize selections

- Luminosity increasing at LHC → more complicated events
 - Computation costs will increase
- LHC experiments are resource limited
 - There is more physics to analyze in the events
- Selections: ~30% of HLT2 computing cost

HLT2 trigger selections

- ~1600 trigger lines making selections on various physics signatures
- Lines usually consists of at least
 - Maker: Creates a container of particles coming from reconstruction
 - Filter: Performs cuts on input particles
 - NBodyCombiners: Iterates over combinations of N input particles and performs cuts on combination

HLT2 trigger line strategy

- Important: Trigger lines should be independent
- This important rule also means that lines might perform very similar operations
 - Tiny differences creates duplicate algorithms

Optimization goal

- Important: Trigger lines should be independent
- This important rule also means that lines might perform very similar operations
 - Tiny differences creates duplicate algorithms
- Goal: Identify and reduce overlapping computations

Optimization framework

- Optimization framework(work in progress)
 - Identify similar combiners with common grandparent
 - Merges Filters and Combiners together with an OR applied to their cuts
 - Separating D0s into their respective lines using filters
- Old:

Optimization framework

- Optimization framework(work in progress)
 - Identify similar combiners with common grandparent
 - Merges Filters and Combiners together with an OR applied to their cuts
 - Separating D0s into their respective lines using filters
- Old:

New:

Optimization framework

- Optimization framework(work in progress)
 - Identify similar combiners with common grandparent
 - Merges Filters and Combiners together with an OR applied to their cuts

Separating D0s into their respective lines using filters

Old:

New:

- Initial performance
 - 134 sets of combiners
 - ~500 combiners in total
 - ~1100 lines affected
- Naive combination
 - Full set always combined

- Initial performance
 - 134 sets of combiners
 - ~500 combiners in total
 - ~1100 lines affected
- Naive combination
 - o Full set always combined
- Overall most sets perform worse

- Initial performance
 - 134 sets of combiners
 - ~500 combiners in total
 - ~1100 lines affected
- Naive combination
 - o Full set always combined
- Overall most sets perform worse
- But:
 - Modular framework
 - ~1.8% improvement on total trigger timing

- Combiner + Input Filters
 - Separation filters are very expensive
 - Ongoing work in simplifying the cuts

Full version

Conclusions & Outlook

- Optimization of HLT2 is needed for future operations and very useful for current
- This work has focused on combiners sharing a common grandparent
- Work is ongoing
 - o Initial results show slight improvement of 1.8% but there is potential for more
 - Combination sets
 - Separation filter cuts

Thank you for your attention! Questions?

Only Combiners

Only Input Filters

Prescaling

Prescale complicates the problem

Old version:

• Part of the algorithms run

New version:

The full combiner runs every time it is needed

Unnecessary combinations are made

