Fragmentation of charged-particle jets in pp collisions with ALICE

Gijs van Weelden

Energetic spray of particles Longitudinal momentum fraction $z = \frac{\mathbf{p}_{i} \cdot \mathbf{p}_{jet}}{p_{jet}^{2}}$

Initiated by quark or gluon

NNV SAP Fall Meeting, 03.11.2023

Jets

Fragmentation

$$z = \frac{\mathbf{p}_i \cdot \mathbf{p}_{jet}}{p_{jet}^2}$$

Expected to be different for quarks and gluons because gluons carry colour-anticolour charge ("octet")

Fragmentation probes non-perturbative QCD

Motivation: theory Gluons

Quarks

Number density of (charged) particles with momentum fraction z

Gijs van Weelden

NNV SAP Fall Meeting, 03.11.2023

Gluon fragmentation poorly constrained

d'Enterria et al. Nucl. Phys. B 883

Motivation: experiment

More K_S^0 in gluon jets Λ^0 is more enhanced than $K_{\rm S}^0$

NNV SAP Fall Meeting, 03.11.2023

JADE, Rev. Mod. Phys. 54 (2), 325-387 (1982)

OPAL: Eur. Phys. J. C 8, 241-254 (1999)

e^+e^- collisions

d'Enterria et al. Nucl. Phys. B 883

NNV SAP Fall Meeting, 03.11.2023

OPAL: Eur. Phys. J. C 8, 241-254 (1999)

d'Enterria et al. Nucl. Phys. B 883

+ Clean signal

NNV SAP Fall Meeting, 03.11.2023

OPAL: Eur. Phys. J. C 8, 241-254 (1999)

e^+e^- collisions

d'Enterria et al. Nucl. Phys. B 883

+ Clean signal

+ Allows for q/g tagging of jets

OPAL: Eur. Phys. J. C 8, 241-254 (1999)

e⁺e⁻ collisions

d'Enterria et al. Nucl. Phys. B 883

+ Clean signal

+ Allows for q/g tagging of jets

- Access to gluons at NLO only

OPAL: Eur. Phys. J. C 8, 241-254 (1999)

$e^{+}e^{-}$ collisions

d'Enterria et al. Nucl. Phys. B 883

Fits made to e^+e^- data: mainly quark jets pp collisions produce mainly gluon jets LHC Run 3 pp data has enough statistics to probe gluon fragmentation Yields of Λ^0 and K_{ς}^0 are different in quark jets and gluon jets

this measurement

ALICE Run 3 pp

- ALICE tracking efficiency and PID capabilities give us the necessary tools for

Monte Carlo Simulation

Gluons, quarks $\rightarrow K^0$

Gijs van Weelden

Gluons $\rightarrow K^0$, Λ^0

Monte Carlo Simulation

Comparing gluon and quark jet fragmentation into Λ^0 and K^0

- Gluons have softer fragmentation
- Enhanced Λ^0 production in gluon jets at $z \leq 0.5$

ALI-SIMUL-550630

Λ^0/K^0 in gluon jets and quark jets

- Approximately independent of z for quark jets
- Significantly different in gluon jets

PYTHA

ALI-SIMUL-550634

NNV SAP Fall Meeting, 03.11.2023

10

Trigger: R = 0.2 jet with $p_{T,jet} > 8$ GeV/c

Trigger: R = 0.2 jet with $p_{T,iet} > 8$ GeV/c

NNV SAP Fall Meeting, 03.11.2023

12

Trigger: R = 0.2 jet with $p_{T,iet} > 8$ GeV/c

Jet yield for larger R modified far above threshold, up to 20 GeV/*c*

• Trigger leads to depletion of R = 0.4 jets in selected events

Trigger on R = 0.2 biases the R = 0.4jet sample

 Close to threshold: strong bias towards jets with high z tracks

Trigger on R = 0.2 biases the R = 0.4jet sample

 Close to threshold: strong bias towards jets with high z tracks

Trigger on R = 0.2 biases the R = 0.4jet sample

 Close to threshold: strong bias towards jets with high z tracks

For $p_{T,iet} > 20$ GeV/c: bias-free sample

Detector Response

Compare PYTHIA at particle-level and detector-level

- Diagonal entries: $p_{T,iet}$ unaffected
- Lower triangle: $p_{T,jet}$ decreased (missed tracks)

Small spread around diagonal

Observable robust to detector effects

Correct for detector resolution

Summary

- Gluon fragmentation is theoretically poorly constrained
- Measurement of z in pp collisions for Λ^0 , K_{S}^0 shows promise
- Gluon jets fragment into more, soft baryons
- Effects of trigger bias and detector response are well-understood
- Next: PID differential measurement with Run 3 ALICE pp data

Backup

Fragmentation of quarks and gluons into K^0 and Λ^0

Gijs van Weelden

PYTHA

Fragmentation of quarks and gluons into K^0 and Λ^0

Quarks

Gijs van Weelden

Gijs van Weelden

