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INTRODUCTION
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§ Since its discovery, Higgs boson properties 
measured with precision 

§ Studying heavy-flavour decays remains central 

§ Observation of decay into b-quark pairs provided 
direct evidence of Yukawa coupling

§ Challenging channel 𝐻 → 𝑐 ̅𝑐 still to be observed
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THE HIGH-ENERGY REGIME 

§ Expected sensitivity to New Physics

§ Helping to probe rare processes

§ Highly boosted decay products become 
collimated, requiring dedicated tagging 
techniques
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FLAVOUR-TAGGING
A KEY INGREDIENT

§ Identifying heavy-flavour jets in inclusive approach
§ Discriminating b, c and light-flavour jets 

§ A key ingredient to a majority of physics analyses 
§ From precision measurements to direct searches
§ To increase signal efficiency and background rejection

§ Exploit specific topology of heavy flavour-jets
§ Lifetime, high-mass & decay multiplicity of B/D-hadrons
§ Using several complementary algorithms (c.f. backup)
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HISTORICAL ATLAS TAGGING STRATEGIES 

§ Worked fine, but somehow blind to the entire picture of the jet activity

Large-R Jet
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Sub-jets (3x)
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Feed-Forward Neural Network
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1st Generation
Flavour-tag sub-jet from 
large-R jet candidates

2nd Generation
Combined sub-jet tagging 

information and jet kinematics in NN

ATLAS-CONF-2021-051

https://cds.cern.ch/record/2782535
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§ Recent progress in Machine Learning expanded realm of possibilities
§ Considering new generation of tagging algorithms
§ Learning from low-level information, avoiding intermediate reconstruction algorithms
§ ATLAS Combined performance groups at the forefront of adopting such technologies                             

(e.g. flavour-tagging, tracking, etc. )

§ Transformer introduced by a team at Google Brain in 2017 [link]
§ Emerged as a dominant paradigm in Machine Learning across various applications
§ Ability to model complex relationships and deliver outstanding performance

7

THE TRANSFORMER EXPLOSION
Towards a 3rd Generation of Tagging Algorithm

https://arxiv.org/abs/1706.03762
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Understanding Transformer 
with a Social Network Analogy

… one can imagine individuals 
paying attention to others 
based on their similarities
→  Attention mechanism

… individual have 
multiple perspectives or 

sources of influence
→  Multi-head attention concept 

Axiom
People with similar 

characteristics or interests 
tend to interact and influence 

each other more …
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Now, let’s map the analogy to large-R jets

1
Imagine each track as an individual 

in an “large-R jet” network

2
Their kinematics represent 
their unique characteristics 

or attributes

4
Runs parallel attention operations, 

attending to input parts differently
→  Multi-head attention concept 

3
Tracks similarities measured using 

dot-products, indicating feature 
alignment or correlation
→  Attention mechanism
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GN2X ARCHITECTURE
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Dense layers projecting inputs 
into embedding representation

Sequence of 100 tracks / jet (~20 kinematics) 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


§ Multi-class classification trained on 62 million jets
§ Generate probability scores for identifying
𝐻 → 𝑏$𝑏, 𝐻 → 𝑐 ̅𝑐, Top and Multi-jet (QCD) 

§ When assessing tagging efficiencies, probability 
score combined into discriminant
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FOCUS ON JET CLASSIFICATION
ATL-PHYS-PUB-2023-021

Free parameters to control trade-off 
among background rejections
(e.g. 𝑓%## = 0.02, 𝑓&'( = 0.25)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


TAGGING PERFORMANCE

ATL-PHYS-PUB-2023-021ATL-PHYS-PUB-2023-021

§ Significantly outperformed previous models
§ 1.6x and 2.5x increase in top and multi-jet 

rejections respectively at 50% 𝐻 → 𝑏$𝑏 efficiency

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


§ Remarkable stable efficiency as a function of jet 𝑝!

TAGGING PERFORMANCE
ATL-PHYS-PUB-2023-021

+35% signal

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


TAGGING PERFORMANCE

ATL-PHYS-PUB-2023-021

§ 𝐻 → 𝑐 ̅𝑐 tagging by redefining discriminant

             e.g. with 𝑓!## = 0.3, 𝑓$%& = 0.25

§ Significantly outperformed previous models
§ 3x, 5x, 6x increase in top, multi-jet and 𝐻 → 𝑏$𝑏 

rejections respectively at 50% 𝐻 → 𝑐 ̅𝑐 efficiency

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


§ Key variable to discriminate signal & background
§ Shapes should remain distinct after applying                            

𝐻 → 𝑏$𝑏/𝑐 ̅𝑐 tagging in analysis

§ Tagging perf. to be decorrelated from jet kinematics
§ Training on “flat-mass” Higgs-boson samples
§ Resampling in 𝑝", 𝜂 and mass 

§ Mass sculpting kept under control
§ Residual dependences under investigations
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PRESERVING LARGE-R JET MASS
ATL-PHYS-PUB-2023-021

At 70% 𝐻 → 𝑏(𝑏 
efficiency

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


§ Studying boosted Higgs-boson decays to heavy-flavours constitutes important aspect of 
ATLAS physics programme 

§ High-performance algorithm for tagging such Higgs-boson decays can play a crucial role in 
§ Improving sensitivity of searches for New Physics
§ Precise measurements of the Higgs boson properties. 

§ ATLAS recently harnessed new cutting-edge tagging algorithm based on Transformer 
§ Demonstrating remarkable performance improvements - ATL-PHYS-PUB-2023-021

§ Algorithm being deployed in Physics analyses
§ Precise calibration now subject to all attention
§ New exciting results are yet to come, stay tuned
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CONCLUSIONS

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/


Thank you for your “Attention” 
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Back up
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OVERLAP BETWEEN RESOLVED & BOOSTED TOPOLOGIES
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ATLAS-CONF-2021-051

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-051/
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CHANGE OF FLAVOUR-TAGGING PARADIGM

Simulation
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tracks
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algorithms

Trained
algorithms

High level 
algorithm (DL1r)
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Track origins
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ATLAS historical approach New paradigm

Our latest contributions to 
single b-tagging algorithms

First All-in-one
GNN-based tagger

Transformer-based tagger
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THE SELF-ATTENTION MECHANISM 
IN A NUTSHELL

NB: Self attention can be seen as an example of message passing on a fully connected graph   

𝑨/ =+
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MULTI-HEAD ATTENTION
PRINCIPLE

Using scale dot-product attention
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GN2X INPUT KINTEMATICS

ATL-PHYS-PUB-2023-021

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/

