
Daniel Brown, Andreas Freise for the Finesse team, 05.06.2023

1

the new generation
a short introduction to our latest 

version of FINESSE

Long history short

2

• Started1997, PhD side project

• Used extensively worldwide

• Open sourced in 2012

• Continuously used and developed

What can FINESSE do?
FINESSE can simulate: 

• Beam shapes
• Optical losses
• Quantum noise
• Squeezing
• Radiation pressure effects
• Diverse detectors
• Error signals
• Transfer functions

… so long as the model is frequency
domain (i.e. static or quasi-static), paraxial,
and suits modelling using a modal basis.

Image: ‘Finesse 2.1’ poster by D. Töyrä, LIGO-G1601153 3

Using FINESSE: match simulation to defective interferometers

4

Modal model (Finesse) FFT propagation model (DarkF) [
J.

M
ar

qu
e

et
 a

l 2
00

9
]

The FINESSE team always spend significant effort to model imperfect interferometers. This was not
yet crucial for the first generation of detectors, but has become essential for current and future
instruments. Many FINESSE features, conventions and habits have been designed with this in mind.

FINESSE 2 + Pykat

FINESSE 3

Combines both FINESSE 2 and 
 Pykat for efficiency and

performance

We are now encouraging the
use of FINESSE 3 over previous
versions!

The new FINESSE manual is not
yet fully complete but is
constantly evolving on the web
page.

It contains many examples and
documentation for various
functions and commands.

If a part of the manual is not yet
complete and you really need it,
ask in the chat channel and we
will aim to fill it in faster.

Python vs KatScript
• FINESSE 2 only worked with KatScript (which limited

what could be done).

• PyKat added a Python wrapper which essentially
wrote KatScript for you.

• FINESSE 3 is firstly a Python program, it has a Python
interface for everything. KatScript is a wrapper
around the full Python programming interface.

• This means that you can use both to make models
and run simulations. KatScript is often easier or
more compact, Python is more powerful.

• Some features are not (yet) supported in KatScript
and can only be used through Python (e.g surface
maps).

model = finesse.script.parse("""

laser l1 P=1

space s1 l1.p1 m1.p2

mirror m1 R=0.5 T=0.5

power_detector_dc P m1.p2.o
""")

or you can use a Python interface...

from finesse.components import Laser, Space, Mirror

from finesse.detectors import PowerDetector

 
model_python = finesse.Model()
model_python.add(Laser('l1', P=1))
model_python.add(Mirror('m1', R=0.5, T=0.5))
model_python.add(
	 PowerDetector(
	 	 'P’,
	 	 model_python.m1.p2.o
)
)
model_python.add(Space(

's1’,
model_python.l1.p1,
model_python.m1.p1

)
)

KatScript

Python

Changes to KatScript
FINESSE 2 FINESSE 3

Changes to KatScript
FINESSE 3

• Main syntax style stays the same,
i.e. m=mirror, one line per
component

• No 'attribute' command any more

• Values are always assigned using
the parameter name

• No need to specify nodes explicitly

• Instead spaces connect
components directly (using 'ports')

Changes to KatScript
FINESSE 3

• You can do math with numbers,
variables and references in every
command

• New 'degree of freedom' (dof)
command

• New `readout' commands to work
with `dof' for sensing matrices and
noise projection

Actions
FINESSE 3

• `Actions' are new Python functions to run
FINESSE tasks.

• The actions pre-define all task before they
are run. This allows FINESSE 3 to optimise
the model (i.e. remove all tuning options
that are not required by any action).

• Each action can do either a single simple
task or execute a complex task.

• Most users would just use existing
actions, but they are easy to write/expand
with a bit of Python knowledge.

Nodes and ports

Nodes are quite different in FINESSE 3! Each component can
have multiple ports, each port has multiple nodes.

How many and what nodes there are at a port depends on the
physical type: Optical or Signal.

Optical nodes have an input and an output, optical fields can
travel in both directions. Optical ports are typically named `pN`
where N is the node number, pN.i and pN.o are the input and
output optical fields from the component.

Signal nodes represent electrical or mechanical states in the
system (these are where you can inject and read signals from,
like a GW signal or a small mirror oscillation).

Make more examples

p1.i

p1.o

p2.o

p2.i

mech.z
mech.yaw
mech.pitch

mech.F_z
mech.F_yaw
mech.F_pitch

Links to resources
• IFOsim logbooks 

https://logbooks.ifosim.org/

• Interferometer techniques for
gravitational wave detection  
https://link.springer.com/article/10.1007/
s41114-016-0002-8

• GWIC 3G ‘Simulations and Control’, see  
https://dcc.ligo.org/LIGO-G1800565

• IFOsim mailing list:  
https://grouper.ligo.org/mailinglists/ifosim

15

• FINESSE 3 main page: 
https://finesse.ifosim.org/

• FINESSE 3 code repository:  
https://gitlab.com/ifosim/finesse/finesse3

• FINESSE 3 anaconda package:  
https://anaconda.org/conda-forge/finesse

• Chat channel for FINESSE 3:  
https://matrix.to/#/#finesse:matrix.org 

https://link.springer.com/article/10.1007/s41114-016-0002-8
https://link.springer.com/article/10.1007/s41114-016-0002-8
https://dcc.ligo.org/LIGO-G1800565
https://grouper.ligo.org/mailinglists/ifosim
https://finesse.ifosim.org/
https://gitlab.com/ifosim/finesse/finesse3
https://anaconda.org/conda-forge/finesse
https://matrix.to/#/%23finesse:matrix.org

