# (Pixel) modules for ILD TPC

LCTPC module development

TimePix1 modules

Concept proposal for engineered TimePix3 module

### TPC design





- Endcaps made with spaceframes
- Allows stable positioning of detector modules to <50 µm</li>
- Deflection under 2.1 mbar overpressure is 0.22 mm
- Mass is 136 kg/endplate

- 10 m<sup>2</sup> per endcap
- 8 rows of MPGD detector modules; module size ~ 17 x 22 cm<sup>2</sup>
- 240 modules per endcap
- Endplate is 8% X<sub>0</sub>
- Readout modules+electronics 7% X<sub>0</sub>
- Power cables 10% X<sub>0</sub>

### Some numbers on resolution (1)

• p cos  $\lambda$  = 0.3 B R B [Tesla], R [m], p [GeV]

Sagitta s ≈ L<sup>2</sup> / 8R L ≈ pathlength

- B=4T, p=100GeV, L=1.2m => R=83.3m
- => s=2.16 mm

### Some numbers on resolution (2)

- B=4T, p=100GeV, L=1.2m => R=83.3m
- => s=2.16 mm

- TPC alone (pad readout ~200 points):  $\Delta 1/p = \Delta p/p^2 \sim 10^{-4} \text{ GeV}^{-1} => \Delta p/p = 10^{-4} \text{ p}$
- P = 100 GeV:  $\Delta p/p = 10^{-2} = \Delta s/s$

•  $\Delta s = 10^{-2} s = \Delta s = 22 \mu m !!!$ 

# Some history (not complete)

- 2008: 1T magnet + Large Prototype TPC; first Micromegas module test (Saclay)
- 2009 ++: double-GEM (Japanese) and triple-GEM (DESY) modules tests
- End-2010: first (single) Octopuce TimePix1 module test (Nikhef+Saclay)
- 2012 ++: 7-module Micromegas (with integrated electronics)
- 2014: 2 (single) Octopuce (16 TimePix1) + 5 Micromegas (Nikhef+Saclay) modules; synchronised readout
- 2015: 3 multi-Oktoboard modules (Bonn); 160 TimePix1 GridPix

#### Beam Tests of the Large Prototype TPC



- Large Prototype (LP) TPC is setup in DESY test beam, area T24/1. e<sup>+</sup>/e<sup>-</sup> from 1 to 6 GeV/c.
- PCMAG magnet: 1T magnet. This year modified to run with cryo coolers and closed cooling cycle.
- · Mounted on 3-axis movable table.







## Several beam tests at DESY with LP (2008-2013) by LCTPC collaboration

Micromegas (T2K readout)

GEMs (Altro readout)









Integrated



Timmermans -

### Micromegas module

# Material budget of a module

|                                                 |           | M (g) | Radiation<br>Length<br>(g/cm²) |
|-------------------------------------------------|-----------|-------|--------------------------------|
| Module frame +<br>Back-frame +<br>Radiator (×6) | Al        | 714   | 24.01                          |
| Detector +<br>FEC PCB (×6) +<br>FEM             | Si        | 712   | 21.82                          |
| 12 '300-point' connectors                       | Carbon    | 30    | 42.70                          |
| screws for FEC + Stud screws+                   | Fe        | 294   | 13.84                          |
| Air cooling                                     | brass     | 12    | 12.73                          |
|                                                 | Plexiglas | 128   | 40.54                          |
| Average of a module                             |           | 1890  | 21.38                          |



#### Low material budget requirement for ILD-TPC:

Endplates: ~25% X<sub>0</sub>
 (X<sub>0</sub>: radiation length in cm)

$$\frac{d}{X_0} = 0.236 < 0.25$$



#### Large Prototype TPC for ILC

#### 1T PCMagnet on lifting stage



Large Prototype TPC



Enplate + 7 Micromegas modules







- Built by the collaboration LC-TPC
- Financed by EUDET & AIDA
- Located at DESY: 6 GeV e- beam
- Sharing out:
  - magnet: KEK, Japan
  - field cage: DESY, Germany
  - lifting stage: DESY, Germany
  - cosmic trigger: Saclay, France
  - beam trigger: Nikhef, Netherlands
  - endplate: Cornell, USA
  - Micromegas: Saclay, France, Carleton U., Canada
  - GEM: Saga, Japan

Desy, Bonn, Germany

9

- TimePix pixel: F, G, NL

#### 8 Ingrids on daughter board







Beam

### Diameter ~70 cm Max. Drift ~58 cm



Tests with 1 module were performed at Nikhef in December Tests with 7 modules are ongoing at DESY





# 2-phase CO<sub>2</sub> cooling

21

P. Colas - TPC for ILC 26/02/2014

### Bonn 96-TimePix1 GridPix module



#### Bonn test beam with 160 TimePix1 Ingrids Mar/Apr 2015

### Setup

3 modules (one with 12 octoboards, 2 with 4 octoboards)





# Sketch of a layout

Guard field grid, possibly serving also as wire ion gate



# "Nikhef" plan/proposal

- Full engineering study of LP TPC module with maximum coverage Timepix3-Ingrids
- Optimisation of:
  - Geometric coverage
  - Mechanical precision
  - Readout (SPIDR)
  - (roomtemperature) CO2 cooling
  - Minimum amount of material (< 0.25 X0)</li>
  - If possible, compatible with future Through-Silicon-Vias connectivity and lon gate

# First questions/wishes....

- Basic unit: N Ingrids on daughter-PCBs, sectors on base-PCB or full-module PCB?
- "flipped-chip" mounting of FPGA for N Ingrids
- What is minimum and/or optimal value of N?
- CO2 cooling capacity for 100% duty cycle possible? At ILC power pulsing ~1-2% duty c. (Japanese groups in LCTPC bought Nikhef cooling plant)
- LV power distribution? Compatible with power pulsing
- HV supply & sectoring? + HV for gating GEM



# Planning/staging questions....

- Should be realised within coming 1.5-2 years
- Pre-study full-scale cooling (6 months?)
- Pre-module for full-scale (bare-chip) uitlezing (6 months?)
- Full-module with Timepix3-Ingrids (month<18?)</li>

- Engineering personpower?
- Who wants to participate of R&D group and other Nikhef staff?
- Possible collaboration with Saclay/Bonn?

- Possibility insertion of "data serialiser" between TimePix3 chips and SPIDR FPGA, allowing 1 SPIDR to read 96 TimePix3 (possibility of SPIDR at 'large' distance?)
- Rough estimates of costs:
  - 3 kEur per TimePix3 wafer (w. 50% yield is 50-60 good chips)
  - ~ 3 kEur /wafer for IZM Ingrid production
  - ~ 3 kEur /module for SPIDR readout
  - ~ few kEur /module for base PCB + mechanics module frame
  - X number of modules = 3
  - Contingency x2 for 2 years = total of ~ < 100 kEur</li>
  - Some items to be shared with Bonn (possibly Saclay?)