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Overlapping signals?

= Detectable signals which are in-band at the same time
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Overlapping signals, really?

Probability of overlapping signals increase as the detector gets upgraded because:

a) Longer duration signals
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Overlapping signals, really?

Probability of overlapping signals increase as the detector gets upgraded because:

a) Longer duration signals
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Overlapping signals, really?

Chances of overlapping signals increase as the detector gets upgraded because:

a) Longer duration signals
b) More signals
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Overlapping signals, really?

Chances of overlapping signals increase as the detector gets upgraded because:

a) Longer duration signals
b) More signals
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A very basic sketch of GW parameter estimation

The goal is to find the values of the parameters at the origin of the observed signal.
Instead of a single value, we build a posterior describing the probability distribution of
the signals
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Generally done using Monte Carlo methods or Nested Sampling



A very basic sketch of GW parameter estimation

The goal is to find probability distributions (posteriors) for the event parameters based

on the data.

Nested Sampling — Find points in parameter space with increasing point of
likelihood
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A very basic sketch of GW parameter estimation
The goal is to find probability distributions (posteriors) for the event parameters based
on the data.

Nested Sampling — Find points in parameter space with increasing point of
likelihood
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A very basic sketch of GW parameter estimation
The goal is to find probability distributions (posteriors) for the event parameters based
on the data.

Nested Sampling — Find points in parameter space with increasing point of

likelihood
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A very basic sketch of GW parameter estimation
The goal is to find probability distributions (posteriors) for the event parameters based
on the data.

Nested Sampling — Find points in parameter space with increasing point of
likelihood
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A very basic sketch of GW parameter estimation
The goal is to find probability distributions (posteriors) for the event parameters based
on the data.

Nested Sampling — Find points in parameter space with increasing point of
likelihood

10000 points 4 21022
(| E— : | |

0.9

300

0.8 1

S8 T

(N]
=
POOYI[aYI] S0]
strain

290

27 28 29 30 time
12



A very basic sketch of GW parameter estimation

Results: 10-22
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Some assumptions are made here:

T

a) Stationary Gaussian noise
b) One detectable signal is present in the data i3



Can we just pretend overlaps do not occur?

Results from Samaijdar et al, 2021:
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https://arxiv.org/pdf/2102.07544.pdf

Overlapping BBHs:

SNR(GW150914-like) = 30

SNR(GW151226-ike) =15 | — € —— tc2 —— BBH
& GW150914 \\
[a
72 74 76 78 0.4 0.6 0.8

PDF

1.0

No bias observed, regardless
of the difference in time.
Probably due to the very
different characteristics and
duration of the signals
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Overlapping BBHSs, other scenarios:

E.g Pizzati et al, 2021

run A run B

401 ® da=1Gpc; dg=1Gpc
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® d,s=05Gpc; dg=1Gpc +’
B W di=1Cpe dy=2 Qe + ¥ $ * “
® di=2Gpc; dp=1Gpc + “““ + —————————————————— -4

When the signal
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— The exact effect of the overlap depends on the exact signals involved (also confirmed by
Relton et al, 2022)
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https://arxiv.org/pdf/2102.07692.pdf
https://arxiv.org/pdf/2103.16225.pdf

BBH overlapping with a BNS

For the BNS recovery: No bias observed
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BBH overlapping with a BNS

For the BNS recovery: No bias observed

— GW150914-tc
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For the BBH recovery:

- High-mass BBH not recovered
- Low-mass BBH recovered with larger
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Overlapping BNS signals

— ¢ tc-2 — BNS
Loudest event is well
. / recovered
W | 7
(@)
) &
! :
| BNS2
1 . . .
w | Faintest signal is not
=\ recovered. We actually
find the loudest one
1 —
1.195 1.196 1.197 0.65 0.80 0.950 1000 2000 3000
M q A

— The Bias could be due to the closely related properties of the signals, generally not so much

bias expected
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Final takeaway for biases due to overlapping signals

Different studies (e.g. Regimbau & Hughes, 2009; Samajdar et al, 2021; Pizzati et
al, 2021; Himemoto et al, 2021; Relton et al, 2022; Antonelli et al. 2022) have been
undertaken with different approaches, all conclude that bias can occur in some
cases, especially when events have close merger times.

It is very hard to determine the detailed situations where bias will occur but it
certainly is a risk
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https://arxiv.org/pdf/0901.2958.pdf
https://arxiv.org/pdf/2102.07544.pdf
https://arxiv.org/pdf/2102.07692.pdf
https://arxiv.org/pdf/2102.07692.pdf
https://arxiv.org/pdf/2103.14816.pdf
https://arxiv.org/pdf/2103.16225.pdf
https://arxiv.org/pdf/2104.01897.pdf

Can we do better?
We can try to better account for the presence of two signals in two ways:

1) Assuming the bias is generally not to strong: hierarchical subtraction

Analysis for 1
signal
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Can we do better?
We can try to better account for the presence of two signals in two ways:

1) Assuming the bias is generally not to strong: hierarchical subtraction
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Can we do better?

We can try to better account for the presence of two signals in two ways:

1) Assuming the bias is generally not to strong: hierarchical subtraction

Analysis for 1
signal
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Can we do better?

We can try to better account for the presence of two signals in two ways:

1) Assuming the bias is generally not to strong: hierarchical subtraction
2) Analyze the two signals jointly: Adapt the framework to account for two signals

strain

Joint analysis

strain

time @

time
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Still some caveats...

We can try to better account for the presence of two signals in two ways:

1) Assuming the bias is generally not to strong: hierarchical subtraction
2) Analyze the two signals jointly: Adapt the framework to account for two signals

— Methods tested in Janquart et al, 2022

However, restricted to overlapping BBHs with a lower frequency of 20Hz due to
restricted computational resources...

Before having the possibility to go to lower masses and frequencies, improvements
needs to be made on the individual signal analysis too (ASK about it in the

discussion session)
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https://arxiv.org/pdf/2211.01304.pdf

Hierarchical subtraction

2 main situations:
HS is biased w.r.t SPE HS is comparable to SPE
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On average, hierarchical subtraction is less precise and more prone to bias than without
overlap
— Expected since imperfect noise realization
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Joint parameter estimation
JPE and SPE are equivalent JPE is biased w.r.t SPE JPE is better than SPE
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More diversity in the recoveries are observed, probably due to the cross term in the joint likelihood.
More extended studies are needed to fully grasp the behavior

— Joint parameter estimation is more accurate than hierarchical subtraction, but slightly
less precise than without overlap

27



Overview Bayesian analysis methods

Joint posterior overlap is better suited than hierarchical subtraction for close-by mergers
Joint parameter estimation has larger uncertainty than without overlap

— |t is possible to use Bayesian frameworks to analyze two overlapped signals
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Overview Bayesian analysis methods

Joint posterior overlap is better suited than hierarchical subtraction for close-by mergers
Joint parameter estimation has larger uncertainty than without overlap
— |t is possible to use Bayesian frameworks to analyze two overlapped signals
BUT
- Not optimal yet — Some deganaracies need to be accounted for
- Not yet tested on more types of signals due to heavy analyses
- Would not be able to keep up the pace with predicted detection rate

- We have not accounted for the difficulties in noise modeling or many overlapping mergers

Can we try something else?
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Machine learning based approach

Results based on Langendorff et al., 2022
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https://arxiv.org/pdf/2211.15097.pdf

Machine learning vs Bayesian

— Baysian approach

—————— ML approach

Q
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.’7\' B
N

G 1
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Machine learning is less prone to bias but has
regularly larger posteriors than Bayesian joint
parameter estimation

Possible cause: small network compared to other
Possible solutions:

Make the network bigger
Use importance sampling in the output
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Conclusions and Outlook

In the 3G era, overlaps will happen and be quite common (Samajdar et al, 2021)

Overlaps raise several issues and can lead to biased posteriors, negatively impacting science
studies

In our works, we have presented several avenues to tackle the issue:
- Hierarchical subtraction (Janquart et al, 2022)
- Joint parameter estimation (Janquart et al, 2022)
- Machine learning based joint parameter estimation (Langendorff et al, 2022)

Up to now, these techniques have been limited to overlapping BBHs due to computational
restrictions
They are not optimal yet but can be improved

In the future:
Work to more realistic scenarios with more background signals, more signal types and higher
SNRs


https://arxiv.org/pdf/2102.07544.pdf
https://arxiv.org/pdf/2211.01304.pdf
https://arxiv.org/pdf/2211.01304.pdf
https://arxiv.org/pdf/2211.15097.pdf

A more realistic picture of what will need to be analyzed
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Source: Wu & Nitz, PRD, 107, 2023
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witrin B B Some issues needing to be
— NSBH | tackled (and key word solutions):

Longer duration signals
Characterization of the noise
(null-stream vs correlated
noise)

Multi-signal analysis
Detection rate vs algorithmic
speed

Back of the envelope: we
would need more than a year
run-time to analyze all the
signals in this frame
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More detailed slides
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More details on rate of overlapping signals

Several independent studies have looked at the probability to have overlapping signals:
- Reaimbau & Hughes, 2009: Based on vanilla events, check the noise regime
- Samajdar et al, 2021: Simulate one year of data and look at the observed overlaps
- Pizzati et al, 2021: Assuming a Poisson process, look at the overlap rate

— All agree: overlaps will be quite common in the 3G detector era

Fraction of BNS with a given number of overlaps
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https://arxiv.org/pdf/0901.2958.pdf
https://arxiv.org/pdf/2102.07544.pdf
https://arxiv.org/pdf/2102.07692.pdf

More details on close-by mergers

Different studies (e.g. Regimbau & Hughes, 2009; Samajdar et al, 2021; Pizzati et al. 2021;
Himemoto et al, 2021; Relton et al. 2022; Antonelli et al. 2022) have been undertaken with

different approaches, all conclude that bias can occur in some cases, especially when
events have close merger times.

Number of seconds in the year with at least 2
mergers occuring

Depending on the exact rate, it
can go from a few on a year to
many of them.

5:;2 \ N..>2BBH | N_>2BNS | N__>2Events
Lowest 48 155 374
Median 127 2412 3663
Highest 303 15581 20149
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Hierarchical subtraction, comparison with no overlap

Mismatch for the maximum likelihood Measure of the bias (normalized distance
recovery between the median and injected value)
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On average, hierarchical subtraction is less precise and more prone to bias than without
overlap
— Expected since imperfect noise realization



Comparison with hierarchical subtraction and without

overlap
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Joint parameter
estimation is more
accurate than
hierarchical
subtraction, but
slightly less
precise than
without overlap
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Machine learning based performance
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