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Figure: Theoretical signal and phases of a binary black hole merger [LIGO Collaboration]
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Ringdown frequencies

Perturbations of black hole decay over time

GWs come from space around the black hole

Fluctuations of a damped harmonic oscillator

Boundary conditions set a dissipative system

* Resonance modes have complex frequencies l
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Rotating black holes

Schwarzschild black hole is static and spherically symmetric

Perturbations of these black holes decouple and separate

Adding angular momentum yields a Kerr black hole in GR

Finding perturbations requires solving Teukolsky equations
A modified Teukolsky equation is needed to go beyond GR
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Higher derivative Gravity

e Extend GR as an effective field theory of higher derivatives
e An approximation to study phenomena at one energy scale
e The complete theory at a higher energy scale is unknown
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Universal Teukolsky equation near Kerr
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Figure: Shift in the 220 QNM frequency relative to Kerr [arXiv:2307.07431]
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Figure: Shift in the 220 QNM frequency relative to Kerr [arXiv:2307.07431]
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GW150914 measurement constraint on cubic even theory
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Figure: Calculated constraints on ¢ from the ringdown analysis of GW150914
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Figure: Calculated constraints on ¢ from the ringdown analysis of GW150914
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Conclusions

QNMs of rotating BHs with the universal Teukolsky equation
Applied to the general EFT class of higher derivative gravity

Correction coefficients were calculated up to ~ 0.7 in spin

Preliminary analysis shows constraints from current data

Sensitivity of future GW detectors from further analysis
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Conclusions

* QNMs of rotating BHs with the universal Teukolsky equation
* Applied to the general EFT class of higher derivative gravity
o Correction coefficients were calculated up to ~ 0.7 in spin

e Preliminary analysis shows constraints from current data

e Sensitivity of future GW detectors from further analysis

Thank you for your attention!
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