

Number counts of GW in ACDM and Scalar-Tensor Theories

Anna Balaudo

In collaboration with:

Mattia Pantiri

Alessandra Silvestri

Is the Universe homogeneous and isotropic?

Is the Universe homogeneous and isotropic?

Is the Universe homogeneous and isotropic?

Is the Universe homogeneous and isotropic?

12h

Mpetha, Congedo and Taylor (2022)

GW propagate in an expanding FRW Universe following

 $\ddot{h}_{+,\times} + 2\mathcal{H}\dot{h}_{+,\times} + k^2h_{+,\times} = 0$

From the strain, we can measure the luminosity distance of the binary

 $\hat{\Delta}(D, \hat{n}) \equiv \frac{\overline{N(D, \hat{n})} - \overline{N(D)}}{\overline{N(D)}} =$

Mpetha, Congedo and Taylor (2022)

$$\hat{\Delta}(D, \vec{n}) = \delta_{\mathrm{N}}^{\mathrm{gw}} + \left(\begin{array}{c} \Lambda_{\mathrm{D}}(\chi, \alpha_{M}) \, \boldsymbol{v} \cdot \boldsymbol{n} + \Lambda_{\mathrm{LSD}}(\chi, \alpha_{M}) \, \partial_{\chi}(\boldsymbol{v} \cdot \boldsymbol{n}) \\ \text{Doppler} & \text{Luminosity Space Distortions} \end{array} \right)$$

Peculiar velocity effects

$$\begin{split} \hat{\Delta}(D,\vec{n}) &= \delta_{\mathrm{N}}^{\mathrm{gw}} + \underbrace{\Lambda_{\mathrm{D}}(\chi,\alpha_{M})\,\boldsymbol{v}\cdot\boldsymbol{n} + \Lambda_{\mathrm{LSD}}(\chi,\alpha_{M})\,\partial_{\chi}(\boldsymbol{v}\cdot\boldsymbol{n})}_{\text{Doppler}} \\ &+ \underbrace{\int_{0}^{\chi} d\chi'\,\Lambda_{\mathrm{L}}(\chi,\chi',\alpha_{M})\,\nabla_{\Omega}^{2}(\Phi+\Psi) + \Lambda_{\mathrm{TD}}(\chi,\alpha_{M})\int_{0}^{\chi} d\chi'(\Phi+\Psi) + \Lambda_{\mathrm{ISW}}(\chi,\alpha_{M})\int_{0}^{\bar{\chi}} d\chi'(\dot{\Phi}+\dot{\Psi})}_{\text{Lensing}} \\ & \xrightarrow{\text{Time delay}} \\ \end{split}$$

Peculiar velocity effects

Integrated relativistic effects during propagation

$$\begin{split} \hat{\Delta}(D,\vec{n}) &= \delta_{\mathrm{N}}^{\mathrm{gw}} + \underbrace{\Lambda_{\mathrm{D}}(\chi,\alpha_{M})\,\boldsymbol{v}\cdot\boldsymbol{n} + \Lambda_{\mathrm{LSD}}(\chi,\alpha_{M})\,\partial_{\chi}(\boldsymbol{v}\cdot\boldsymbol{n})}_{\text{Doppler}} \\ &+ \underbrace{\int_{0}^{\chi}d\chi'\,\Lambda_{\mathrm{L}}(\chi,\chi',\alpha_{M})\,\nabla_{\Omega}^{2}(\Phi+\Psi) + \Lambda_{\mathrm{TD}}(\chi,\alpha_{M})\int_{0}^{\chi}d\chi'(\Phi+\Psi) + \Lambda_{\mathrm{ISW}}(\chi,\alpha_{M})\int_{0}^{\bar{\chi}}d\chi'(\dot{\Phi}+\dot{\Psi})}_{\text{Lensing}} \\ &+ \underbrace{\Lambda_{\Phi}(\chi,\alpha_{M})\Phi + \Lambda_{\partial_{\chi}\Phi}(\chi,\alpha_{M})\,\partial_{\chi}\Phi + \Lambda_{\dot{\Phi}}(\chi,\alpha_{M})\dot{\Phi} + \Lambda_{\Psi}(\chi,\alpha_{M})\Psi}_{\text{Local potentials}} \end{split}$$

Peculiar velocity effects

Integrated relativistic effects during propagation

Local potentials at the wave emission

$$\begin{split} \hat{\Delta}(D,\vec{n}) &= \delta_{\mathrm{N}}^{\mathrm{gw}} + \underbrace{\Lambda_{\mathrm{D}}(\chi,\alpha_{M})\,\boldsymbol{v}\cdot\boldsymbol{n} + \Lambda_{\mathrm{LSD}}(\chi,\alpha_{M})\,\partial_{\chi}(\boldsymbol{v}\cdot\boldsymbol{n})}_{\mathrm{Doppler} \quad \text{Luminosity Space Distortions}} \\ &+ \underbrace{\int_{0}^{\chi} d\chi'\Lambda_{\mathrm{L}}(\chi,\chi',\alpha_{M})\,\nabla_{\Omega}^{2}(\Phi+\Psi) + \Lambda_{\mathrm{TD}}(\chi,\alpha_{M})\int_{0}^{\chi} d\chi'(\Phi+\Psi) + \Lambda_{\mathrm{ISW}}(\chi,\alpha_{M})\int_{0}^{\chi} d\chi'(\dot{\Phi}+\dot{\Psi})}_{\mathrm{Lensing} \quad \text{Time delay} \quad \text{Integrated Sachs-Wölfe}} \\ &+ \underbrace{\Lambda_{\Phi}(\chi,\alpha_{M})\Phi + \Lambda_{\partial_{\chi}\Phi}(\chi,\alpha_{M})\partial_{\chi}\Phi + \Lambda_{\dot{\Phi}}(\chi,\alpha_{M})\dot{\Phi} + \Lambda_{\Psi}(\chi,\alpha_{M})\Psi}_{\mathrm{Local potentials}} \\ &+ \underbrace{\Lambda_{\delta_{\varphi}}(\chi,\alpha_{M})\left(\frac{\dot{\delta_{\varphi}}}{\varphi}\right) + \Lambda_{\delta\varphi}(\chi,\alpha_{M})\frac{\delta\varphi}{\varphi}}_{\mathrm{Scalar field}} \quad - \underbrace{\text{Peculiar velocity effects}}_{\mathrm{Integrated relativistic effects during propagation}}_{\mathrm{Local potentials at the wave emission}} \end{split}$$

Number counts signal in standard GR

Observability

The signal is observable in both detectors!

Number counts in Scalar-Tensor theories

GW number counts is potentially observable by next generation detectors

The GW signal can be crosscorrelated with LSS to give even more information.

Deviations from Λ CDM can only be measured effectively probing the smallest scales. Crucial improvement needed is accuracy on the measure of D_L and on sky-locations

Thank you!

And thanks to Mattia Pantiri and Alessandra Silvestri

$$\begin{split} \hat{\Delta}(D,\boldsymbol{n}) &= \delta_{gw} + \left[1 + \frac{\gamma}{\mathcal{H}} (\dot{\zeta} - \zeta \mathcal{H}) - \zeta (\beta + 1) \right] \boldsymbol{v} \cdot \boldsymbol{n} - \left[\frac{\gamma}{\mathcal{H}} \zeta \right] \partial_{\bar{\chi}} (\boldsymbol{v} \cdot \boldsymbol{n}) - \\ & \int_{0}^{\bar{\chi}} d\chi' \left[\left(\frac{\beta - 1}{2} \right) \frac{\bar{\chi} - \chi'}{\bar{\chi}\chi'} + \frac{\gamma}{2\mathcal{H}\bar{\chi}^{2}} \right] \nabla_{\Omega}^{2} (\Phi + \Psi) + \left[\frac{1 - \beta}{\bar{\chi}} + \frac{\gamma}{\mathcal{H}\bar{\chi}^{2}} \right] \int_{0}^{\bar{\chi}} d\chi' (\Phi + \Psi) + \\ & + \left[\zeta (\beta + 1) - \frac{\gamma}{\mathcal{H}} \dot{\zeta} \right] \int_{0}^{\bar{\chi}} d\chi' (\dot{\Phi} + \dot{\Psi}) + \left[\beta - 1 - \frac{\gamma}{\bar{\chi}\mathcal{H}} \right] \Phi + \frac{\gamma}{\mathcal{H}} \partial_{\bar{\chi}} \Phi + \\ & + \left[\frac{\gamma}{\mathcal{H}} (\zeta - 1) \right] \dot{\Phi} + \left[1 - \frac{\gamma}{\mathcal{H}} \left(\frac{1}{\bar{\chi}} + \dot{\zeta} \right) + \zeta (\beta + 1) \right] \Psi + \\ & + \gamma \frac{\alpha_{M}}{2} \left(\frac{\dot{\delta \varphi}}{\varphi} \right) + \gamma \left[\frac{\dot{\alpha_{M}}}{2} + \frac{\alpha_{M}}{2} \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}} - \beta - 1 \right) \right] \frac{\delta \varphi}{\varphi} \end{split}$$