Hunting for gravitational waves in the era of cosmic dawn

Pratika Dayal

The team in Groningen

With: the LISA consortium, the SKA and Euclid theory groups, the ALMA (REBELS) team and JWST teams (Panoramic, Primer, CosmicSpring, Uncover)

- How many black holes exist and merge in the first billion years?
- Which sort of mergers (in terms of mass and redshift) will LISA see?
- How should we interpret the gravitational wave background seen by LISA?
- What about the electromagnetic counterparts for black hole mergers?

The multi-scale processes determining the formation of a BH binary

Credit: Lupi et al. (2019)

Credit: Capelo et al. (2015)

Credit: Souza Lima et al. (2017)

Credit: Bowen et al. 2017

Mpcs: The large scale structure

1-100s kpcs: Galaxy interactions/merger

1-10s pc: Formation of a bound binary

<1 pc: Hardening of the binary

The formation, growth and mergers of black holes is intricately tied to the properties of their host galaxies

"Astrophysics with LISA" white paper, 2023, LRR, 26, 2 arXiv:2203.06016

The golden age for observing early galaxies

Numerous pathways for black hole seed formation and growth

6

Datasets allowing baselined models into unprecedented epochs

Datasets allowing baselined models into unprecedented epochs

The LISA-detectable GW event rate as function of redshift

Delayed merging

• In *fiducial case (ins1)* Most detectable mergers (~67%) are those from SBH-SBH, followed by SBH-DCBH mergers (32%). DCBH-DCBH mergers negligible.

• Due to delayed mergers, importance of DCBH-SBH mergers decreases. No detectable DCBH-DCBH mergers (with SNR>7).

DELPHI; PD, Rossi et al. 2019, MNRAS, 486, 2336

The LISA-detectable GW event rate as function of redshift

• In *fiducial case (ins1)* Most detectable mergers (~67%) are those from SBH-SBH, followed by SBH-DCBH mergers (32%). DCBH-DCBH mergers negligible.

• Due to delayed mergers, importance of DCBH-SBH mergers decreases. No detectable DCBH-DCBH mergers (with SNR>7).

DELPHI; PD, Rossi et al. 2019, MNRAS, 486, 2336

GW event rates crucially dependent on assumptions of BH seeds masses, feedback and merger timescales

Breakthroughs in studying galaxies through cosmic time

NASA / JWST AND HST TEAMS

Breakthroughs in studying galaxies through cosmic time

Obese black holes in the first billion years with the JWST

Explaining the supermassive black holes being observed by JWST require unphysical explanations such as super-Eddington accretion onto low-mass seeds or Eddington accretion onto massive (10⁴ M_{\odot}) seeds that formed at $z \sim 50$ posing an enormous challenge for all existing theoretical models.

Goulding et al. 2023; Kokorev et al. 2023; Furtak et al. 2023; Greene et al. 2023

JWST black holes in a hierarchical structure formation context

JWST black holes in a hierarchical structure formation context

An over-abundance of black holes with the JWST

The JWST indicates at black hole number densities that are at the upper limit of theoretical expectations (each halo has a black hole similar to the local Universe that can accrete at the Eddington rate), specially at z>6.5.

A need to revisit black hole seeding and growth pathways

Towards a holistic picture of BHs in the first billion years

Global properties of galaxy populations

Galaxies being probed up to z~13; black holes up to z~10. Indicate an overabundance of massive galaxies and obese black holes

Individual galaxy properties

constraints on assembly histories, dust formation mechanisms, gas masses, black hole masses, black hole massstellar mass relations

Gravitational wave astronomy

LISA will detect mergers from 10⁴⁻⁷ solar masses at z~3-15, mostly from low-mass BH mergers. The event rates remain debatable & need revisiting in light of JWST data.