

Belgian-dutch GW meeting

First order phase transitions in the early universe and quantizing particles across the wall

Miguel Vanvlasselaer miguel.vanvlasselaer@vub.be

VUB and IIHE brussels

November 2023

Miguel Vanvlasselaer (VUB and IIHE brussels)

First order phase transitions in the early universe and quantizing par

Phase transitions in the early universe

Phase transitions in the early universe

Phase transition in everyday life

First order phase transition (FOPT) in the early universe

Universe high-T after inflation:cooling of primordial soup

• $QFT = Iandscape of minima \Rightarrow PT$

First order phase transition (FOPT) in the early universe

- $\bullet \ \mathsf{QFT} = \mathsf{landscape} \ \mathsf{of} \ \mathsf{minima} \Rightarrow \mathsf{PT}$
- Potential $V(T, \phi) = V_0(\phi) + V_{thermal}(T, \phi)$

First order phase transition (FOPT) in the early universe

- $\bullet \ \mathsf{QFT} = \mathsf{landscape} \ \mathsf{of} \ \mathsf{minima} \Rightarrow \mathsf{PT}$
- Potential $V(T, \phi) = V_0(\phi) + V_{thermal}(T, \phi)$
- High T: $V \supset \phi^2 T^2 \implies$ sym restoration

First order phase transition (FOPT) in the early universe

- $\bullet \ \mathsf{QFT} = \mathsf{landscape} \ \mathsf{of} \ \mathsf{minima} \Rightarrow \mathsf{PT}$
- Potential $V(T, \phi) = V_0(\phi) + V_{thermal}(T, \phi)$
- High T: $V \supset \phi^2 T^2 \implies$ sym restoration
- FOPT feature a barrier between two vacua and cooling $(T_{
 m nuc} < T_{
 m cr})$

First order phase transition (FOPT) in the early universe

- $\bullet \ \mathsf{QFT} = \mathsf{landscape} \ \mathsf{of} \ \mathsf{minima} \Rightarrow \mathsf{PT}$
- Potential $V(T,\phi) = V_0(\phi) + V_{thermal}(T,\phi)$
- High T: $V \supset \phi^2 T^2 \implies$ sym restoration
- FOPT feature a barrier between two vacua and cooling ($T_{\rm nuc} < T_{\rm cr})$
- Nucleation controlled by bounce solution

$$\Gamma \sim T^4 Exp \left[-\frac{S_3}{T} \right]$$

• Energy released $\Delta V \Rightarrow$ Driving energy:

$$E_{\rm driving} = -\frac{4}{3}\pi\Delta V R^3 \ \mathsf{VS} \ \Delta \mathcal{P}_{\rm tension} = 4\pi\sigma R^2$$

Expansion when $R_{\rm initial} > R_c \sim \sigma / \Delta V$

• Energy released $\Delta V \Rightarrow$ Driving energy:

$$E_{\rm driving} = -\frac{4}{3}\pi\Delta V R^3 \ VS \ \Delta \mathcal{P}_{\rm tension} = 4\pi\sigma R^2$$

Expansion when $R_{
m initial} > R_c \sim \sigma/\Delta V$

• Transition starts approximately when one bubble per Hubble volume, $T=T_{
m nuc}$

• Energy released $\Delta V \Rightarrow$ Driving energy:

$$E_{\rm driving} = -\frac{4}{3}\pi\Delta V R^3 \ VS \ \Delta \mathcal{P}_{\rm tension} = 4\pi\sigma R^2$$

Expansion when $R_{
m initial} > R_c \sim \sigma/\Delta V$

- Transition starts approximately when one bubble per Hubble volume, $T=T_{
 m nuc}$
- Strength of the FOPT

$$\alpha \equiv \frac{\Delta V}{\rho_r} \propto 1/T_{\rm nuc}^4$$

• Energy released $\Delta V \Rightarrow$ Driving energy:

$$E_{\rm driving} = -\frac{4}{3}\pi\Delta V R^3 \ VS \ \Delta \mathcal{P}_{\rm tension} = 4\pi\sigma R^2$$

Expansion when $R_{\rm initial} > R_c \sim \sigma / \Delta V$

- Transition starts approximately when one bubble per Hubble volume, $T=T_{\rm nuc}$
- Strength of the FOPT

$$\alpha \equiv \frac{\Delta V}{\rho_r} \propto 1/T_{\rm nuc}^4$$

• Duration of the FOPT

$$\beta \equiv \frac{t_{\rm exp}}{t_{PT}} = \frac{1}{t_{PT}H} \propto R_{\rm collision}^{-1}$$

FOPT pictorially

Cutting, Hindmarsh and Weir: [1906.00480]: video in

https://vimeo.com/showcase/5968055

Miguel Vanvlasselaer (VUB and IIHE brussels)

First order phase transitions in the early universe and quantizing par

The bubble wall in time

FOPT: What is the interest? Baryogenesis

Bubbles can create baryon anti-baryon asymmetry

FOPT: What is the interest? Baryogenesis

Bubbles can create baryon anti-baryon asymmetry

Figure: Credit:T.Konstandin [1302.6713]

Baldes I., Blasi S., Mariotti A., Sevrin A., Turbang K.

Eung C., Dutka T., Jung T., Nagels X. and MV (2023)

Traditional EWBG

Yin W. Azatov A. and MV (2021)

FOPT: What is the interest? DM

• FOPT can modify and set the DM abundance via

FOPT: What is the interest? DM

• FOPT can modify and set the DM abundance via

```
Supercool Dark Matter: Hambye,
Strumia, Tesi (2018)
```


Baldes I., Gouttenoire Y., Sala F., Servant G. (2022)

Yin W. Azatov A. and MV (2021)

Asadi, Kramer, Kuflik, Ridgway Slatyer, Smirnov (2022)

FOPT: What is the interest? GW

Bubbles can produce a stochastic GW background from

FOPT: What is the interest? GW

Bubbles can produce a stochastic GW background from

Primordial GWs could be observed soon: Frequency \Rightarrow information about $T_{\rm reh}$: $f_{\rm peak} \propto T_{\rm reh}$

Observation prospects of GW

PTA with FOPT?

Nanograv BSM study: arXiv:2306.16219

FOPT could explain the signal of PTA if $\alpha \gtrsim 0.1$, $\beta \lesssim 10$. Need for strong and long FOPT!

What about v_w ??

Pressure on the bubble wall in the relativistic regime

Pressure on the bubble wall in the relativistic regime

FOPT and bubbles

 $\Delta V = \underbrace{\Delta \mathcal{P}(\gamma = \gamma^{MAX})}_{??} \quad \text{(velocity)}$

Build the function $\Delta \mathcal{P}(\gamma)$!!

Figure: Credit: Giulio Barni, thanks to him

ultra-relativistic limit:

$$v_w \to c, \qquad \gamma \equiv \frac{1}{\sqrt{1 - v_w^2}}$$

Bodeker-Moore [0903.4099], [1703.08215], Azatov, MV[2010.02590], Sala,

Pressure contributions

Jinno, Gouttenoire[arXiv:2112.07686]

QFT in the background of the wall

QFT in the background of the wall

[2310.06972] with Aleksandr Azatov(Sissa Trieste), Giulio Barni(Sissa Trieste) and Rudin Petrossian(ICTP Trieste)

First technicality: What is the complete basis of scattering states?

• We set the unitary gauge: $\Box h = -V''(v)h$ $\partial_{\nu}F^{\mu\nu} = g^2v^2(z)A^{\mu}$.

- We set the unitary gauge: $\Box h = -V''(v)h$ $\partial_{\nu}F^{\mu\nu} = g^2v^2(z)A^{\mu}$.
- Vector field has three polarization degrees of freedom

$$A^{\mu} = \sum_{i=1,2,3} \epsilon^{\mu}_{i} a_{i}(x). \qquad k_{\mu} = (k_{0}, k_{\perp}, 0, k_{z})$$

- We set the unitary gauge: $\Box h = -V''(v)h$ $\partial_{\nu}F^{\mu\nu} = g^2v^2(z)A^{\mu}$.
- Vector field has three polarization degrees of freedom

$$A^{\mu} = \sum_{i=1,2,3} \epsilon^{\mu}_{i} a_{i}(x). \qquad k_{\mu} = (k_{0}, k_{\perp}, 0, k_{z})$$

• Transverse $(A_z = 0)$

$$\mathsf{T}: \epsilon_1 = (0, 0, 1, 0), \qquad \epsilon_2 = (k_\perp, k_0, 0, 0) / \sqrt{k_0^2 - k_\perp^2} \implies \left[E^2 - \partial_z^2 + g^2 v^2(z) \right] A_{\tau_{1,2}}(z) = 0 \; .$$

- We set the unitary gauge: $\Box h = -V''(v)h$ $\partial_{\nu}F^{\mu\nu} = g^2v^2(z)A^{\mu}$.
- Vector field has three polarization degrees of freedom

$$A^{\mu} = \sum_{i=1,2,3} \epsilon^{\mu}_{i} a_{i}(x). \qquad k_{\mu} = (k_{0}, k_{\perp}, 0, k_{z})$$

• Transverse $(A_z = 0)$

$$\mathsf{T}: \epsilon_1 = (0, 0, 1, 0), \qquad \epsilon_2 = (k_\perp, k_0, 0, 0) / \sqrt{k_0^2 - k_\perp^2} \implies \left[E^2 - \partial_z^2 + g^2 v^2(z) \right] A_{\tau_{1,2}}(z) = 0 \; .$$

• Longitudinal ($A_z \neq 0$)

 $\mathsf{L}: A^{(z-pol)}_{\mu} = \partial_n \alpha(z) + \lambda(z) \qquad \frac{\partial_{\mu}(v^2 A^{\mu}) = 0}{\mu(v^2 A^{\mu})} = 0 \quad + \quad \text{transversality}$

$$\left(-E^2 - \partial_z^2 + U_\lambda(z)\right)\lambda = 0$$
 with $U_\lambda(z) = g^2 v^2(z) + 2\left(\frac{\partial_z v}{v}\right)^2 - \frac{\partial_z^2 v}{v}$

λ as the magical dof? $v_1 \rightarrow 0$.

• When $v_1 \rightarrow 0$, how do we see that

$$\lambda_{z \to -\infty} \to \phi_2?$$

λ as the magical dof? $v_1 \rightarrow 0$.

• When $v_1 \rightarrow 0$, how do we see that

$$\lambda_{z \to -\infty} \to \phi_2?$$

 \bullet Potential for λ

$$\left(-E^2 - \partial_z^2 + U_\lambda(z)\right)\lambda = 0 \qquad \text{with} \qquad U_\lambda(z) = \ g^2 v^2(z) + 2\left(\frac{\partial_z v}{v}\right)^2 - \frac{\partial_z^2 v}{v}$$

$$v_1 \to 0: \quad m_{\lambda, z \to -\infty} \to m_h, \qquad m_{\lambda, z \to \infty} \to gv$$

λ as the magical dof? $v_1 \rightarrow 0$.

• When $v_1 \rightarrow 0$, how do we see that

$$\lambda_{z \to -\infty} \to \phi_2?$$

 \bullet Potential for λ

a

$$\left(-E^2-\partial_z^2+U_\lambda(z)\right)\lambda=0\qquad\text{with}\qquad U_\lambda(z)=\ g^2v^2(z)+2\left(\frac{\partial_z v}{v}\right)^2-\frac{\partial_z^2 v}{v}$$

$$v_1 \to 0: \quad m_{\lambda, z \to -\infty} \to m_h, \qquad m_{\lambda, z \to \infty} \to gv$$

$$A^{\mu}_{\lambda}\big|_{z\to -\infty} \propto \partial^{\mu} \left(\frac{\phi_2}{gv}\right)$$

Going to pressure: Who dominates? λ or τ ?

$$\Delta \mathcal{P}_{\rm splittings}^{\tau} \propto \gamma g^3 T^3 v \log v / T \qquad \qquad \Delta \mathcal{P}_{\rm splittings}^{\lambda} \propto \gamma g^3 T^3 v$$

Relative importance of τ and λ contributions

• FOPT are related to baryogenesis, Dark matter, primordial black holes and observable GW

- FOPT are related to baryogenesis, Dark matter, primordial black holes and observable GW
- Their efficiency depends on v_w .

- FOPT are related to baryogenesis, Dark matter, primordial black holes and observable GW
- Their efficiency depends on v_w .
- In the relativistic regime, three contributions: i) $1 \rightarrow 1$: γ^0 , ii) $1 \rightarrow$ heavy: γ^0 , ii) $\tau : 1 \rightarrow 2$: $\gamma^1 \log v/T$

- FOPT are related to baryogenesis, Dark matter, primordial black holes and observable GW
- Their efficiency depends on v_w .
- In the relativistic regime, three contributions: i) $1 \rightarrow 1$: γ^0 , ii) $1 \rightarrow$ heavy: γ^0 , ii) $\tau : 1 \rightarrow 2$: $\gamma^1 \log v/T$
- Procedure for computing $1 \rightarrow 2$: i) define complete basis (LM and RM), ii) define global dof $\lambda \rightarrow \phi_2$, iii) split properly the phase space integral
- Conclusion: $\lambda : 1 \to 2$: γ^1 . Can dominate for $v/T \sim 1$.

Matching our polarisation with *usual* ones

• Usual dof of polarisation

$$\epsilon_{T_1} = (0, 0, 1, 0), \qquad \epsilon_{T_2} = (0, k_z, 0, -k_\perp) / \sqrt{k_z^2 + k_\perp^2} \qquad \epsilon_L = \left(\frac{k_0^2 - m^2}{k_0}, k_\perp, 0, k_z\right) \frac{k_0}{m\sqrt{k_0^2 - m^2}}$$

• Our dof of polarisation

$$\epsilon_{\tau_1} = (0, 0, 1, 0), \qquad \epsilon_{\tau_2} = (k_\perp, k_0, 0, 0) / \sqrt{k_0^2 - k_\perp^2} \qquad \epsilon_\lambda^\mu = \frac{k^z}{Eqv} \, k^\mu + \frac{gv}{E} (0 \ , 0 \ , 0 \ , 1)$$

• Matching matrix between the two

$$\begin{pmatrix} \epsilon_{T_1} \\ \epsilon_{T_2} \\ \epsilon_L \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{k_0 k_z}{E \sqrt{k_z^2 + k_\perp^2}} & -\frac{k_\perp m}{E \sqrt{k_z^2 + k_\perp^2}} \\ 0 & \frac{k_\perp m}{E \sqrt{k_z^2 + k_\perp^2}} & \frac{k_0 k_z}{E \sqrt{k_z^2 + k_\perp^2}} \end{pmatrix} \begin{pmatrix} \epsilon_{\tau_1} \\ \epsilon_{\tau_2} \\ \epsilon_{\lambda} \end{pmatrix}$$

Quantisation in the background of the wall

• System of Equations of motion across the wall with "wall terms" and masses in R_{ξ} gauges

 $\Box h = -V''(v)h$ EoM of the wall

$$\Box \phi_2 = -2gA^{\mu}(\partial_{\mu}v) - \xi g^2 v^2 \phi_2 - V' \frac{\phi_2}{v} \qquad \text{EoM of the Goldstone}$$
$$\partial_{\nu} F^{\mu\nu} = \frac{1}{\xi} \partial^{\mu}(\partial_{\nu}A^{\nu}) + g^2 v^2 A^{\mu} - 2g\phi_2(\partial^{\mu}v) \qquad \text{EoM of the Gauge field}$$

Quantisation in the background of the wall

• System of Equations of motion across the wall with "wall terms" and masses in R_{ξ} gauges

 $\Box h = -V''(v)h \qquad \text{EoM of the wall}$

$$\Box \phi_2 = -2g A^{\mu}(\partial_{\mu} v) - \xi g^2 v^2 \phi_2 - V' \frac{\phi_2}{v} \qquad \text{EoM of the Goldstone}$$

 $\partial_{\nu}F^{\mu\nu} = \frac{1}{\xi}\partial^{\mu}(\partial_{\nu}A^{\nu}) + g^{2}v^{2}A^{\mu} - 2g\phi_{2}(\partial^{\mu}v) \qquad \text{EoM of the Gauge field}$

• Field in the symmetric phase: $(h, \phi_2, A_1^{\mu}, A_2^{\mu})$ $m_h^2 \equiv \partial_h^2 V(0) = \partial_{\phi_2}^2 V(0)$ $\epsilon_{T_1}^{\mu} = (0, 0, 1, 0)$, $\epsilon_{T_2}^{\mu} = \frac{1}{\sqrt{k_{\perp}^2 + k_z^2}} (0, k_z, 0, -k_{\perp})$, $\mathbf{k}^{\mu} = (k_0, k_{\perp}, 0, k^z)$.

Quantisation in the background of the wall

• System of Equations of motion across the wall with "wall terms" and masses in R_{ε} gauges

 $\Box h = -V''(v)h \qquad \text{EoM of the wall}$

$$\Box \phi_2 = -2g A^{\mu}(\partial_{\mu} v) - \xi g^2 v^2 \phi_2 - V' rac{\phi_2}{v}$$
 EoM of the Goldstone

 $\partial_{\nu}F^{\mu\nu} = \frac{1}{\epsilon}\partial^{\mu}(\partial_{\nu}A^{\nu}) + g^2v^2A^{\mu} - 2g\phi_2(\partial^{\mu}v) \qquad \text{EoM of the Gauge field}$

- Field in the symmetric phase: $(h, \phi_2, A_1^{\mu}, A_2^{\mu})$ $m_h^2 \equiv \partial_h^2 V(0) = \partial_{\phi_2}^2 V(0)$ $\epsilon_{T_1}^{\mu} = (0, 0, 1, 0) , \qquad \epsilon_{T_2}^{\mu} = \frac{1}{\sqrt{k^2 + k^2}} (0, k_z, 0, -k_{\perp}) , \qquad \mathbf{k}^{\mu} = (k_0, k_{\perp}, 0, k^z) .$
- Field in the broken phase $\xi \to \infty$ (Unitary gauge): $m_h^2 = \partial_h^2 V(v_2)$ $\tilde{m} \equiv qv_2$

$$\partial_\mu F^{\mu\nu} + \tilde{m}^2 A^\nu = 0 \;, \implies \partial^2 A^\mu + \tilde{m}^2 A^\mu = 0 \;, \qquad \partial_\mu A^\mu = 0 \;.$$

$$\epsilon_L^{\mu} = \left(\frac{p_0^2 - m^2}{p_0}, p_{\perp}, 0, p_z\right) \frac{p_0}{m\sqrt{p_0^2 - m^2}}$$

We cannot apply the same approximations all over in the phase space!

• $k_z < L_w^{-1}$: Step wall procedure: non-trivial matching conditions for λ

$$\left. \frac{\partial_z \lambda}{v(z)} \right|_{<0} = \left. \frac{\partial_z \lambda}{v(z)} \right|_{>0} , \quad v(z)\lambda|_{<0} = \left. v(z)\lambda \right|_{>0} \qquad \text{discontinuity in } \lambda \text{ across the wall!!}$$

We cannot apply the same approximations all over in the phase space!

• $k_z < L_w^{-1}$: Step wall procedure: non-trivial matching conditions for λ

$$\left.\frac{\partial_z \lambda}{v(z)}\right|_{<0} = \left.\frac{\partial_z \lambda}{v(z)}\right|_{>0} \ , \quad v(z)\lambda|_{<0} = \left.v(z)\lambda\right|_{>0} \qquad \text{discontinuity in λ across the wall!!}$$

• $k_z < L_w^{-1}$: for λ ,

$$k_z \gg m, \tilde{m}, \qquad R \to \frac{v_2^2 - v_1^2}{v_2^2 + v_1^2} \to 1$$

We cannot apply the same approximations all over in the phase space!

• $k_z < L_w^{-1}$: Step wall procedure: non-trivial matching conditions for λ

$$\left.\frac{\partial_z\lambda}{v(z)}\right|_{<0} = \left.\frac{\partial_z\lambda}{v(z)}\right|_{>0} \ , \quad v(z)\lambda|_{<0} = \left.v(z)\lambda\right|_{>0} \qquad \text{discontinuity in λ across the wall!!}$$

•
$$k_z < L_w^{-1}$$
: for λ ,

$$k_z \gg m, \tilde{m}, \qquad R \to \frac{v_2^2 - v_1^2}{v_2^2 + v_1^2} \to 1$$

• $k_z > L_w^{-1}$: *WKB approach* with BM amplitude and $\Delta p_z L_w < 1$

We cannot apply the same approximations all over in the phase space!

• $k_z < L_w^{-1}$: Step wall procedure: non-trivial matching conditions for λ

$$\left.\frac{\partial_z\lambda}{v(z)}\right|_{<0} = \left.\frac{\partial_z\lambda}{v(z)}\right|_{>0} \ , \quad v(z)\lambda|_{<0} = \left.v(z)\lambda\right|_{>0} \qquad \text{discontinuity in λ across the wall!!}$$

•
$$k_z < L_w^{-1}$$
: for λ ,

$$k_z \gg m, \tilde{m}, \qquad R \to \frac{v_2^2 - v_1^2}{v_2^2 + v_1^2} \to 1$$

- $k_z > L_w^{-1}$: *WKB approach* with BM amplitude and $\Delta p_z L_w < 1$
- In the end, three computations needed to evaluate each process

$$\langle \Delta p_{\zeta_L}^{\text{step}} \rangle, \ \langle \Delta p_{\zeta_R}^{\text{step}} \rangle, \ \langle \Delta p_{\zeta_R}^{WKB} \rangle.$$