

Large Physics Models through Al Prisms

Simulation-based inference for Stochastic Gravitational Wave Background Data Analysis

Christoph Weniger GRAPPA, Institute of Physics, University of Amsterdam

netherlands Science center

AI4Science Lab

Belgian-Dutch Gravitational Wave Meeting 2023, Maastricht, 23 October 2023

NWO

Likelihood-based inference via Sampling

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH

The curse of dimensionality

Feroz+ 0809.3437 (MultiNest) Handley+ 1502.01856 (PolyChord)

The curse of dimensionality

 $q_{\phi}(\mathbf{z}_{\text{Waldo}} \mid \mathbf{x}_{o}) = \int d\mathbf{z}_{\text{Lucia}} d\mathbf{z}_{\text{Oleg}} d\mathbf{z}_{\text{Sibilla}} d\mathbf{z}_{\text{Dion}} \cdots d\mathbf{z}_{\text{Noemi}} \ q_{\phi}(\mathbf{z}_{\text{Waldo}}, \mathbf{z}_{\text{Lucia}}, \mathbf{z}_{\text{Oleg}}, \mathbf{z}_{\text{Sibilla}}, \mathbf{z}_{\text{Dion}}, \cdots, \mathbf{z}_{\text{Noemi}} \mid \mathbf{x}_{o})$ Same "physics"

Simulation-based inference

Train a neural network to find Waldo's marginal posterior.

Simulation-based inference (SBI)

Classic analog: Approximate Bayesian Computation*

Data summary

Simulate & compress

$p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z}) = p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z} \mid \mathbf{x})p(\mathbf{x})$

Simulated data $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x}, \mathbf{z})$

Backward (Inference)

Amortised!

After generating simulation data, the posteriors for any observation can be generated instantaneously. Without re-simulation.

> *this analogy might not exactly apply to all SBI algorithms but serves the purpose of providing some basic intuition for what is going on

SBI with "neural ratio estimation"

Neural ratio estimation (NRE)

Train a neural network to discriminate

- Real sims: $z, \mathbf{x} \sim p(\mathbf{x} | z)p(z)$
- Scrambled sims: $z, \mathbf{x} \sim p(\mathbf{x})p(z)$

 $\ln r(\mathbf{x}, z) \equiv M_{\phi}(\mathbf{s}, \mathbf{z}) \simeq \ln -$

$$\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})} = \ln \frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} = \ln \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})}$$

Take-away: SBI enables focused inference

It turns out that solving 30 one-dim problems can be much easier than solving one 30-dim problem.

Sequential inference Gaining precision through targeted simulations

Samples from full prior: $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})$

Image credit: Noemi Anau Montel

6 0 4 ZE 8

Samples from some constrained prior: $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z}) \tilde{p}_{\mathbf{x}_o}(\mathbf{z})$

NRE training

Durkan+ 2002.03712 for a discussion

Marginal sequential inference Key idea: Use a truncated version of the prior as proposal function.

$$\tilde{p}^{(R)}(\mathbf{z}) = \frac{1}{Z} \mathbb{I}(\mathbf{z} \in \Gamma^{(R-1)}) p(\mathbf{z})$$
Miller L2011 2051

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE We use a hard likelihood constrained prior truncation scheme, excluding low likelihood regions estimated in previous rounds.

$$\Gamma^{(R)} = \{ \mathbf{z} \in \mathbb{R}^N : \tilde{r}^{(R)}(\mathbf{x}; \mathbf{z}) > \epsilon \} \qquad \tilde{r}^{(R)}(\mathbf{x}; \mathbf{z}) \simeq \frac{p(\mathbf{x})}{p(\mathbf{x}; \mathbf{z})}$$

Doing this leaves the learned ratio unaffected, and marginal estimation becomes possible

$$q_{\phi}^{(R)}\left(z_{1} \mid \mathbf{x}\right) \simeq \int dz_{2} \dots dz_{N} \ p(\mathbf{x} \mid \mathbf{z}) \frac{1}{Z} \mathbb{I}(\mathbf{z} \in \Gamma^{(R-1)})$$

See also Greenberg+ 1905.07488, Durkan+ 2002.03712 for sequential methods Applied to NPE in Deistler+ 2210.04815 \mathbf{Z}

 $^{-1)}p(z_2,\ldots,z_N) = \int dz_2\ldots dz_N \ p(\mathbf{x} \mid \mathbf{z})p(z_2,\ldots,z_N) + \mathcal{O}(\epsilon)$

Large Physics Models through AI Prisms

Model & Data

AI-based comparison

Inference

Refinement

Applications: Strong lensing images, stellar streams, gravitational waves, 21cm cosmology, Planck cosmology, large scale structure data, point source populations, Ia SN cosmology, ...

Focused statistical insights

Noemi Anau Montel (GRAPPA, UvA)

Uddipta Bhardwaj (GRAPPA, UvA)

Mathis Gerdes (GRAPPA, UvA)

Ph.D. students & Postdocs

Kosio Karchev (SISSA)

Oleg Savchenko (GRAPPA, UvA)

Anchal Saxena (University of Groningen)

Ben Miller (GRAPPA & Al4Science, UvA)

First applications to Gravitational waves

James Alvey (GRAPPA, UvA)

Uddipta Bhardwaj (GRAPPA, UvA)

Gravitational wave parameter inference Single signal

Gravitational wave parameter inference Single signal

Step 1: Estimation of 1-dim posteriors (15 1-dim posteriors in 8 rounds)

- Essentially the same results as, e.g., dynesty
- 2% of simulation-runs compared to nested sampling

Step 2: Estimation of 2-dim posteriors

Estimation = N(N - 1)/2 = 105 marginal 2-dim posteriors

Bhardwaj+ 2304.02035

Gravitational wave parameter inference Overlapping GW signals

(See also talk by Tomek Baka)

Alvey+ 2308.06318

- 2 x IMRPhenomXPHM
- 36 hours (instead of >20 days)
- Much faster than MCMC
- Higher precision than previous SBI attempts
- Precision only mildly degraded w.r.t. fits in absence of a second signal

Parameter	Prior Choice	Injection (GW1)) Injection $(GW2)$
$\overline{\rm Chirp\ mass}\ \mathcal{M}\left[{\rm M}_{\odot}\right]$	U(20, 100)	32.2	26.8
Mass ratio, q	${ m U}(0.125,1)$	0.77	0.81
Inclination angle θ_{jn} [rad]	$\mathrm{sine}(0,\pi)$	0.05	1.8
Polarisation angle ψ [rad]	$\mathrm{U}(0,\pi)$	0.9	0.4
Phase ϕ_c [rad]	$\mathrm{U}(0,2\pi)$	1.5	0.6
$\text{Tilt angles } \theta_1, \theta_2 [\text{rad}]$	$\mathrm{sine}(0,\pi)$	1.5, 1.5	0.9,1.2
Dimensionless spins a_1, a_2	$\mathrm{U}(0,1)$	0.1,0.05	0.7,0.3
Spin angles $\phi_{12}, \phi_{jl} \text{ [rad]}$	$\mathrm{U}(0,2\pi)$	0.8, 0.8	0.6,0.9
Right ascension α [rad]	$\mathrm{U}(0,2\pi)$	0.8	4.0
$\text{Declination } \delta \left[\text{rad} \right]$	$\operatorname{cosine}(-\pi/2,\pi/2)$	1.0	-0.5
Merger time $t_c [\text{GPS s}]$	${ m U}(-0.1, 0.1)$	0.0	
Merger time difference Δt_c [GPS s] U(0,1)		0.05(C1), 0.2(C2), 0.5(C3)
Luminosity Distance $d_{\rm L} [{ m Mpc}]$	${ m U_{vol.}}(100,2500)^{\star}$	1545	636.5

Gravitational wave parameter inference Solving overlapping GW signals

Check out Uddipta Bhardwaj's talk tomorrow!

Alvey+ 2308.06318

https://github.com/PEREGRINE-GW/peregrine

Gravitational wave parameter inference Bayesian credible interval coverage

Alvey+ 2308.06318

(High-dim posteriors are possible as well)

- Example: Strong gravitational galaxy-galaxy lensing
- Method: Autoregressive Neural Ratio estimation

$$p(\mathbf{z} \mid \mathbf{x}) = p(z_1 \mid \mathbf{x}) \prod_{i=2}^{N} p(z_i \mid \mathbf{x}, z_{1:i-1})$$

• Sampling: Nested sampling from joined likelihood

Stochastic GW background **Reconstructing an SGWB from mock LISA data**

Simple case study

- 12 days of data, split in 10 chunks to estimate PSD, one TDI channel
- Varying signal model complexity
 - PL
 - agnostic 5-param or 10-param template
- Varying noise model complexity
 - Stationary LISA noise
 - stochastic transient signals (test mass noise, optical metrology system)

$$\begin{array}{ll} \textbf{power law:} & \Omega_{\rm GW}(f)h^2 = 10^{\alpha} \left(\frac{f}{\sqrt{f_{\rm min}f_{\rm max}}}\right)^{\gamma}\\ \textbf{agnostic:} & \Omega_{\rm GW}(f)h^2 = \sum_{i=1}^{N_{\rm bins}} 10^{\alpha_i} \left(\frac{f}{\sqrt{f_{\rm min},if_{\rm max},i}}\right)\\ & \times \Theta(f-f_{\rm min,i})\Theta(f_{\rm max,i}-f) \end{array}$$

Stochastic GW background

Power-law (with stochastic transient signal)

- In absence of transients, MCMC results are recovered with same precision
- In presence of transients, MCMC leads to biased results (when transients are neglected), while saqqara/Swyft correctly marginalises over transients (if present in simulation-data)

Agnostic templates

- Again, results are identical to MCMC, at significantly reduced computational costs
- Makes it possible to consider high-dimensional scenarios (here 10-parameter agnostic template)

Goal: One large physics model from many perspectives

Simulation-based inference assembly for large models (our approach)

* Each analysis with SBI can account for uncertainties of all components, because training data for the inference neural networks can randomise all parameters over their priors.

ML, GWs, ...: Upcoming events in NL

ML4GW@NL: Machine learning for Gravitational Wave Research in the Netherlands

One-day mini-workshop, Friday 8th December, Utrecht or Amsterdam

https://indico.nikhef.nl/event/4878/

2nd Swyft workshop

4-day crash course in simulation-based inference with Swyft 5-9 February 2024, Amsterdam (TBC)

EuCAIFCon - European AI for Fundamental Physics Conference

Large "horizontal" conference on AI in particle physics, astroparticle, physics, gravitational waves, cosmology, nuclear physics ... (eucaif.org)

30 April - 3 May 2024, Amsterdam

https://github.com/undark-lab/swyft

Conclusions

- The analysis of high-dimensional models is computationally expensive.
- Upcoming gravitational wave data provides a lot of high-dimensional analysis challenges (overlapping waveforms, lensed gravitational waves, all of LISA data)
- The unique capability of SBI is to perform **focused statistical inference**.
- Swyft/TMNRE is our attempt to provide efficient algorithms and tools for focused inference.
- We did first steps in applying SBI to GW analysis problems, with promising results.

ERC CoG UnDark, Proj. No. 864035 Thanks!

Backup

Simulation- vs likelihood-based techniques

x: observable data

 $\theta_a, \theta_b, \theta_c$: different sets of model parameters, for an exemplary hierarchical model (e.g., cosmological parameters, θ_a , guide the position of galaxies today θ_b , and with instrumental systematic uncertainties θ_c , lead to data x)

We got used to solve inference problems partially

* Parameter degeneracies are only accounted for partially, as only parameter averages are passed between partial models and their analysis runs. e.g., Analysis of point sources

NRE = binary classification

Strategy: We estimate posteriors-to-prior ratio by training a binary classifier to discriminate between matching and scrambled (data, parameter) pairs.

$$r(\mathbf{x}; \mathbf{z}) \equiv \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})} = \frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})}$$

Data: **x** Parameter: **z**

Hermans+ 1903.04057

Neural ratio estimation Algorithm

Generate training data $\mathcal{D} \equiv \{ (\mathbf{x}_i, \mathbf{z}_i) \mid i = 1, 2, \dots, N \}, \mathbf{x}, \mathbf{z} \sim p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z}) \}$

Train neural network using the mini-batch loss function

$$\mathcal{L}(\phi) = -\sum_{i \in B} \ln \sigma(f_{\phi}(\mathbf{x}_i, \mathbf{z}_i)) + \ln \sigma(-f_{\phi}(\mathbf{x}_i, \mathbf{z}_{P(i)}))$$

 $Y = 1 : \mathbf{x}, \mathbf{z} \sim p(\mathbf{x})$

Here, *B* denotes a mini-batch, and *P* denotes random sample permutations.

After training, $f_{\phi}(\mathbf{x},$

TMNRE

Initialise real-valued neural network, $f_{\phi}(\mathbf{x}, \mathbf{z})$

(x, z)
$$Y = 0 : \mathbf{x}, \mathbf{z} \sim p(\mathbf{x})p(\mathbf{z})$$

$$\mathbf{z}$$
) $\approx \ln r(\mathbf{x}; \mathbf{z}) = \ln \frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})}$

Xobs

Swyft software package

Initial plan: "Hey, writing a python module for TMNRE would be cool and impactful, should take 2-3 weeks"

Miller+ 2011.13951

Methods that we worked with in our group

Variational inference **Gaussian processes** PyKeOps **Probabilistic programming Normalising flows Differentiable simulators** TMNRE HMC

Hierarchical TMNRE

Scalable TMNRE

Image analysis TMNRE

Density TMNRE

