

Sequential simulation based inference for gravitational waves

Uddipta Bhardwaj GRAPPA, University of Amsterdam u.bhardwaj@uva.nl

Collaborators

Samaya Nissanke

Christoph Weniger

Ben Miller

Based on 2304.02035, 2308.06318

Key words: simulation efficiency, sequential-SBI, truncation, marginals

Servitational wave (GW) parameter inference: LIGO, Virgo and Lord Bayes ▲ Simulation based inference for GW physics: A(n) (explicit-)likelihood-free future A sequence of steps towards the truth: Staying on target Conclusions and promises

Expectations

GW inference works! Why change it?

4

`Bayesian inference task: $P(\theta | d) = \frac{\mathscr{L}\pi}{\mathscr{T}}$

 $d = h(\theta_{GW}) + n_{detector} \mid \theta_{GW} = (M_i, S_{ji}, d_L \dots)$

Inference via traditional samplers : MCMC, multinest, dynesty etc.
 O(10⁶ - 10⁷) waveform evaluations

How long of a signal?
How complicated can L be?
How many dimensions?
How many detections?

Surely not all of them together?

The sampling problem

Figure: Cumulative distribution of LVKC GW detections over time. Projected value for 10 years of LVKC operations is $O(10^3 - 10^4)$. **Credit:** LVKC

Figure: Inference time vs number of GW detections (estimated for traditional samplers using current LVKC resources)

The sampling problem

- Near-future detector efforts will lead to the detection of new types of source and a steep increase in the detection rate.
- Signals will linger for much longer in the detectors' sensitive band,
- Highly likely that signals from different sources will be simultaneously present in the data.

- Speri+ (Nat. Ast., 10.1038/s41550-022-01849-y)

Feroz+ 0809.3437 (MultiNest) Handley+ 1502.01856 (PolyChord) Figure credit: C. Weniger

swyft : Miller et al. (2021, 2022) arXiv:2011.13951 arXiv:2107.01214 Slide credit: C. Weniger

TRUNCATED MARGINAL NEURAL RATIO ESTIMATION (TMNRE) WITH

STEP 1: (RE-) SIMULATE

Sample parameters $\vec{\theta}$ from (truncated) prior $p(\vec{\theta})$ **** Simulate data $d(\vec{\theta}) \sim p(d | \vec{\theta})$

STEP 4: TRUNCATION

- ► Use ratios $r(x_0, \theta_i)$ to remove regions with extremely low posterior density
- ➤ If this leads to a reduction in prior volume, resimulate from Step 1 with truncated prior

Schematic

STEP 2: RATIO ESTIMATION

Train ratio estimators $r(d, \theta_i)$ on simulated data to approximate the posterior-to-prior ratio $r(d, \theta_i) \sim p(\theta_i | d) / p(\theta_i)$ for each parameter of interest θ_i

STEP 3: INFERENCE

- ▲ Obtain a prior sample from $p(\theta_i)$
- ➤ Target a specific observation and compute the ratios $r(d_0, \theta_i)$ across the prior sample
- ➤ Weight the samples according to this ratio

Sequential SBI for GW parameter inference

- ~ 45 million waveform computations for dynesty!

 \sim ~ 700k simulations constitute training data over subsequent TMNRE rounds

~ Actiges precision vie triogation on a Peregran evaluations!!

Results

Bhardwaj, Alvey, et al. (2023) arxiv.2304.02035

Alvey, Bhardwaj et al. (2023) arxiv.2308.06318

Results

Thank you

Takeaway:

- **A need to re-think GW inference for the future**
- **Solution** Focusing on marginals for physical conclusions rather than high dimensional correlations
- Sequential approach to precision analysis. TMNRE
- **Obtain reliable posteriors identical to those obtained via traditional** X methods at a fraction of the cost!
- Crucial for solving significant analysis challenges facing next-gen detectors e.g. overlapping signals, SGWB searches, very long signals (O(weeks)!), nongaussian correlated noise
- Sequential simulation based inference for gravitational waves (arxiv.2304.02035: Bhardwaj, Alvey, et al.) Q
- What to do when things get crowded? Scalable joint analysis of overlapping gravitational wave signals (arxiv.2308.06318: Alvey, Bhardwaj et al.) $\mathbf{\overline{\mathbf{M}}}$
- Simulation-based inference for stochastic gravitational wave background data analysis (*arxiv.2309.07954:* Alvey, Bhardwaj et al.) $\mathbf{\overline{\mathbf{A}}}$

https://github.com/PEREGRINE-GW/peregrine

Uddipta Bhardwaj, James Alvey Gravitational waves

Uddipta Bhardwaj Standard sirens, MMA

Noemi Anau Montel Strong Lensing +

James Alvey, Mathis Gerdes Stellar streams

Benjamin Kurt Miller swyft

Guillermo F. Abellan, Oleg Savchenko Cosmological simulations

TMNRE @ GRAPPA

PEREGRINE-GW/ peregrine

A simulation-based Inference (SBI) library designed to perform analysis on a wide class of gravitational wave signals 日 2 83 1 $\odot 0$ 57 5 Contributor Discussions Stars Issues

undark-lab/swyft

A system for scientific simulation-based inference at scale.

8 8	⊙ 9	只 2	☆ 116	v 10
Contributors	Issues	Discussions	Stars	Forks

Christoph Weniger, Samaya Nissanke

B1: Truncation

B2: Coverage tests

B3: Quantitative comparisons

$\mathbf{JSD}\left[10^{-3}\mathrm{nat}\right]$	peregrine	dynesty	dynesty (re-run)	ptemcee	cpnes
peregrine		18.0	13.1	21.0	20.
dynesty	9.75		4.02	10.0	35.5
dynesty (re-run)	10.9	0.55		10.6	29.9
ptemcee	16.5	7.01	7.56		35.9
cpnest	6.82	3.52	4.46	8.60	

